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ABSTRACT

In recent years, the issue of water allocation among competing users has been of great concern for many
countries due to increasing water demand from population growth and economic development. In water
management systems, the inherent uncertainties and their potential interactions pose a significant
challenge for water managers to identify optimal water-allocation schemes in a complex and uncertain
environment. This paper thus proposes a methodology that incorporates optimization techniques and
statistical experimental designs within a general framework to address the issues of uncertainty and risk
as well as their correlations in a systematic manner. A water resources management problem is used to
demonstrate the applicability of the proposed methodology. The results indicate that interval solutions
can be generated for the objective function and decision variables, and a number of decision alternatives
can be obtained under different policy scenarios. The solutions with different risk levels of constraint
violation can help quantify the relationship between the economic objective and the system risk, which
is meaningful for supporting risk management. The experimental data obtained from the Taguchi's
orthogonal array design are useful for identifying the significant factors affecting the means of total net
benefits. Then the findings from the mixed-level factorial experiment can help reveal the latent interactions

between those significant factors at different levels and their effects on the modeling response.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Due to population growth and economic development, water
demand for municipal, industrial, and agricultural uses is increas-
ing, while the surface and groundwater pollution is deteriorating,
and fresh water supplies are going to run out. Water scarcity is
thus becoming a critical issue in many countries. According to the
United Nations, approximately 700 million people in 43 countries
are now suffering from water scarcity, and it is projected that
1.8 billion people will be living in countries or regions with
absolute water scarcity by 2025 [1].

Conflict can arise from different water users competing for a
limited water supply [2]. To achieve sustainable development,
wise decisions are desired to make best use of limited water
resources. Optimization techniques have played an important role
in helping decision makers allocate and manage water resources in
an effective and efficient way. For example, Wang et al. [2] introduced
a cooperative water allocation model (CWAM) for pursuing fair and
efficient water resources allocation among competing users while
taking into account hydrologic, economic and environmental inter-
relationships; CWAM was applied to a large-scale water allocation
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problem in the South Saskatchewan River Basin located in south-
ern Alberta, Canada. Almifiana et al. [3] presented optimization
algorithms implemented in a decision support system that pro-
vided dynamic scheduling of the daily water irrigation for a given
land area by taking into account the irrigation network topology,
the water volume technical conditions and the logistical operation.
Yang et al. [4] combined a decentralized optimization method with
a multiple agent system for solving a water allocation problem
considering both human and natural water demands in the Yellow
River Basin, China. De Corte and Soérensen [5] conducted a
thorough review of existing methods for the optimization of water
distribution networks. In water management systems, however,
the inherent uncertainty exists due to unavailability of system
information, modeling inaccuracy, randomness of natural pro-
cesses, and diversity in subjective judgments. Thus, decisions have
to be made in the face of an uncertain and risky future. These
complexities can become further intensified by latent interactions
among various uncertainties and their consequent effects on
system performance. As a result, conventional optimization meth-
ods would become ineffective when a variety of uncertainties exist
in system components.

Over the past years, a number of optimization methods have
been proposed for dealing with uncertainties in water resources
management [6-11]. For example, Chung et al. [12] applied a robust
optimization approach in a water supply system to minimize the
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total system cost; this approach could address parameter uncer-
tainty without excessively affecting the system. Guo et al. [13]
developed a fuzzy stochastic two-stage programming approach for
supporting water resources management under multiple uncer-
tainties with both fuzzy and random characteristics. Gaivoronski
et al. [14] developed a quantitative approach for cost/risk balanced
planning of water resources systems under uncertainty; this
approach incorporated risk management approaches into a
multi-stage stochastic optimization model that tackled uncer-
tainty being described by scenario trees. Among these methods,
two-stage stochastic programming (TSP) has the ability to take
corrective actions after a random event occurs [15-20]. It can be
used to deal with random variables and make decisions in a two-
stage fashion. For example, a water manager needs to promise
water allocation to water users before the rain season, and may
need to take some recourse action after the rain season. Chance-
constrained programming (CCP) is another alternative for tackling
random variables and supporting risk-based decision making
[21,22]. It can be used to provide a trade-off analysis between
the economic objective and the system risk. However, both
TSP and CCP can tackle uncertain information only presented
as probability distributions; they are incapable of addressing
uncertainties in other formats, resulting in difficulties when the
available data is insufficient to generate distribution functions in
real-world water management problems. In comparison, interval-
parameter linear programming (ILP) is effective in dealing with
uncertain information expressed as interval numbers with known
lower and upper bounds but unknown distribution functions [23].
It can reflect interval information in model parameters and
resulting solutions, which is helpful for decision makers to inter-
pret and adjust decision schemes according to practical situations.
Consequently, an integration of TSP, CCP, and ILP is desired to
support water resources management under multiple uncertain-
ties and risks.

On the other hand, uncertainty and risk are not independent in
water resources management systems; they may interact in
significant ways. It is thus necessary to analyze the potential
interactions between uncertainty and risk as well as their effects
on system performance. Factorial designs have been recognized as
a powerful tool to study the combined effects of two or more
factors on a response variable [24-28]. In this study, a mixed-level
factorial design is proposed to explore the correlations between
factors at different levels and detect the curvature in the response
function [29,30]. As the number of factors of interest increases,
the mixed-level factorial design would become infeasible from
a time and resource viewpoint due to the large number of the
experimental runs required for conducting a factorial experiment.
To reduce the number of experiments to a practical level when
there are many factors to be studied, factor screening is necessary
to identify a few factors that have significant effects on the
response, and remove those insignificant ones at the early stage
of the factorial experiment. The concept of Taguchi's orthogonal
arrays is an effective means for identifying the importance of
factors through performing only a small subset of the experimen-
tal runs [31]. Nevertheless, it can hardly provide information on
how these factors interact. Combining the Taguchi's orthogonal
arrays with the mixed-level factorial design is thus a sound
strategy to study the potential interactions for a large number of
factors with different number of levels in a computationally
efficient way.

The objective of this study is to develop an integrated approach
through incorporating approaches of ILP, TSP, CCP, Taguchi's
orthogonal arrays, and mixed-level factorial design within
a general framework. A water resources management problem
will be used to demonstrate the applicability of the proposed
methodology.

2. Methodology
2.1. Interval-parameter stochastic programming

Consider a problem wherein a water manager is in charge of
allocating water to multiple users, with the objective of maximizing
the total net benefit through identifying optimized water-allocation
schemes. As these users need to know how much water they can
expect so as to make appropriate decisions on their activities and
investments, a prescribed amount of water is promised to each user
according to local water management policies. If the promised water
is delivered, it will bring net benefits to the local economy; other-
wise, the users will have to obtain water from other sources or curtail
their expansion plans, resulting in economic penalties [32].

In this problem, two groups of decision variables can be
distinguished. A first-stage decision of water-allocation targets
must be made before the uncertain seasonal flow is realized; when
the uncertainty of the seasonal flow is uncovered, a second-stage
recourse action can be taken to compensate for any adverse effects
that may have been experienced as a result of the first-stage
decision. Thus, this problem under consideration can be formu-
lated as a TSP model [33]:
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where f is total net benefit ($); NB; is net benefit to user i per m> of
water allocated ($/m3) (first-stage revenue parameters); T; is
allocation target for water that is promised to user i (m?®) (first-
stage decision variables); E[-] is expected value of a random
variable; C; is loss to user i per m> of water not delivered,
C; > NB; ($/m>) (second-stage cost parameters); S, is shortage of
water to user i when the seasonal flow is Q (m?) (second-stage
decision variables); Q is total amount of seasonal flow (m?)
(random variables); T;max is maximum allowable allocation
amount for user i (m?); m is number of water users; i is index of
water user, i=1-3, with i=1 for the municipality, i=2 for the
industrial user, and i=3 for the agricultural sector.

To solve the above problem through linear programming, the
distribution of Q must be approximated by a set of discrete values
(i.e. random seasonal flow can be discretized into three values
representing low, medium and high flows with each having a
probability of occurrence). Letting Q take values g; with probabil-
ities p; (j=1, 2,..., n), we have:
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Thus, model (1a-d) can be reformulated as follows:
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