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a b s t r a c t

In the no-idle flowshop, machines cannot be idle after finishing one job and before starting the next one.
Therefore, start times of jobs must be delayed to guarantee this constraint. In practice machines show
this behavior as it might be technically unfeasible or uneconomical to stop a machine in between jobs.
This has important ramifications in the modern industry including fiber glass processing, foundries,
production of integrated circuits and the steel making industry, among others. However, to assume that
all machines in the shop have this no-idle constraint is not realistic. To the best of our knowledge, this is
the first paper to study the mixed no-idle extension where only some machines have the no-idle
constraint. We present a mixed integer programming model for this new problem and the equations to
calculate the makespan. We also propose a set of formulas to accelerate the calculation of insertions that
is used both in heuristics as well as in the local search procedures. An effective iterated greedy (IG)
algorithm is proposed. We use an NEH-based heuristic to construct a high quality initial solution. A local
search using the proposed accelerations is employed to emphasize intensification and exploration in the
IG. A new destruction and construction procedure is also shown. To evaluate the proposed algorithm, we
present several adaptations of other well-known and recent metaheuristics for the problem and conduct
a comprehensive set of computational and statistical experiments with a total of 1750 instances.
The results show that the proposed IG algorithm outperforms existing methods in the no-idle and in the
mixed no-idle scenarios by a significant margin.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

It has been almost 60 years since the seminal work about the
two machine flowshop problem with makespan minimization
criterion by Johnson [16]. Actually, in the scheduling literature
this paper has been regarded as the first in the field (with the
possible exception of the paper by Salveson [48]). In a flowshop
problem we deal with a set N of n jobs, modeling client orders of
different products to be manufactured, that have to be produced
on a set M of m machines. The layout of the machines in the
production shop is in series, i.e., we have first machine 1, then
machine 2 and so on until machine m. All jobs must visit the
machines in the same processing sequence. This sequence can be,
without loss of generality, f1;…;mg. Therefore, a job is composed
of m tasks or operations. Each task j, j¼ f1;…;ng requires a known,

deterministic and non-negative amount of time at each machine i,
i¼ f1;…;mg. This amount is referred to as processing time and
denoted by pij. The objective is to find a processing sequence of all
jobs at each machine so that a given criterion is optimized. There
are as many possible sequences of jobs as permutations and this
permutation can change from machine to machine which results
in a search space of ðn!Þm non-delay schedules for the Flowshop
Scheduling Problem (FSP). Given this huge search space, most of
the time, the problem simplified by forbidding job passing, i.e.,
once a permutation of jobs is obtained for the first machine, it is
maintained for all other machines, reducing the search space to n!
solutions. This somewhat simpler problem is referred to as the
Permutation Flowshop Scheduling Problem or PFSP. Following the
work of Johnson [16], the most studied optimization criterion is
the minimization of the maximal job completion time or make-
span (Cmax) which corresponds to the time at which the last job in
the sequence is finished at the last machine in the shop. The PFSP
with makespan criterion is denoted as F=prmu=Cmax, following the
accepted three field notation of Graham et al. [13]. Reviews about
flowshop scheduling with this criterion are given by Framinan
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et al. [9], Ruiz and Maroto [40], Hejazi and Saghafian [15] and
Gupta and Stafford [14]. The literature about flowshop scheduling
is huge. Not only does each studied objective span a relatively
large sub-field in itself with hundreds of references, like total
tardiness minimization (see [53]), flowtime optimization [32] or
multiobjective [20], but also problem extensions and variations
abound. It is safe to say that the literature of flowshop scheduling
and variants comprises thousands of papers.

One of the seldom studied extensions of the flowshop is the
no-idle version. In the no-idle permutation flowshop (NPFSP),
machines are not allowed to sit idle after they have started proces-
sing the first job in the sequence. The no-idle condition appears in
production environments where setup times or operating costs of
machines are so high that shutting down machines after the initial
setup is not cost-effective. Idle times might also not be allowed on
machines due to technological constraints. More specifically, in the
no-idle scenario, a machine must process all jobs in the sequence
without interruptions. Therefore, if needed, the start of some jobs is
delayed so as to ensure the no-idle constraint. Examples of no-idle
situations appear in the steppers used in the production of integrated
circuits through photolithography. These fixtures are so expensive
that idling is avoided at all costs. The production of ceramic frits is an
example where idling is technologically impossible due to the usage
of special fusing ovens (called kilns) that burn at extreme tempera-
tures. These ovens need a continuous thermal mass and therefore,
idling is not allowed. Some other examples are found in fiber glass
processing [18], and foundries [46] amongst others. Ruiz et al. [44]
and Goncharov and Sevastyanov [12] published recent reviews about
the NPFSP or F=prmu;no�idle=Cmax.

The current situation is that the no-idle constraint has been so
far considered all or nothing in the flowshop literature, i.e., either
we have a regular idle flowshop where idle times are allowed on
all machines or all machines have the no-idle constraint in the
NPFSP. Real life production shops are mixed and most machines
permit idle times whereas some do not accept idle times. Surpris-
ingly, this realistic mixed no-idle flowshop problem or MNPFSP
has not been studied in the literature before to the best of
our knowledge. We denote this problem by F=prmu;mixed
no�idle=Cmax. In the previous examples of integrated circuits and
ceramic frit production, not all machines in the shop are no-idle.
In the case of ceramic frits, only the central fusing kiln has the
no-idle constraint. Other examples arise in the steelmaking industry.
When producing steel, the charges of molten iron enter converter
stages to reduce impurities (carbon, sulfur, silicon) through oxygen
burning. These charges undergo several other refining stages
where impurities are further reduced, alloys are added and other
operations are carried out. Only after this phase, the molten steel
is poured into a tundish for casting. The flow of molten steel goes
to the crystallizer where it solidifies into slabs. Technological
constraints force the continuous flow of charges with the same
crystallizer and caster. This is where the no-idle constraint
appears. All other stages do not have this no-idle constraint. There
are many other examples in real-life factories. As a matter of fact,
the authors are not aware of any real example in which all the
machines in a flowshop have the no-idle constraint. Therefore, the
MNPFSP is a more realistic problem which has not been studied
before and is thus the motivation for this research. The PFSP is
known to be NP�Complete in the strong sense for more than two
machines and makespan criterion [11]. Similarly, the NPFSP was
shown to belong to the same complexity class for three or more
machines by Baptiste and Hguny [3]. As a result the new MNPFSP
studied in this paper is also NP�Hard in the strong sense.

The rest of the paper is divided into five more sections. In the
next section we review the literature mainly in the no-idle flow-
shop. Section 3 introduces the MNPFSP in more detail. We present
a mixed integer programming model, the formulae to calculate the

makespan and a speed-up method for the efficient calculation of
the insertion neighborhood. Section 4 deals with the proposed
Iterated Greedy method. In Section 5 we present a comprehensive
computational and statistical campaign to test the proposed
methodology. Finally, Section 6 concludes the paper and provides
some avenues for further research.

2. Literature review

As stated, the MNPFSP has not been studied before. As a result,
we focus our summarized review in the no-idle flowshop where
all machines have the no-idle constraint. The NPFSP was first
studied by Adiri and Pohoryles [1] where polynomial time algo-
rithms were proposed for special cases of the NPFSP mainly with
two machines and total completion time criterion. Some amend-
ments to this paper were carried out by Čepek et al. [54]. The Cmax

objective in the NPFSP was studied for the first time by Vacha-
jitpan [51]. The author presented mathematical models and
branch and bound methods for small instances. Baptiste and
Hguny [3] also presented a branch and bound method for the
m-machine NPFSP and makespan criterion whereas the three
machine problem was studied by Narain and Bagga [24] also with
mathematical models and exact approaches. To date, no effective
exact approach has been proposed for the NPFSP and rarely do any
published results solve problems with more than a handful of jobs.
As a result of this, the focus has been on heuristics for the problem.
Some of the early heuristic methods were presented by Woollam [55]
that took some existing heuristics and recalcuated their produced
solutions eliminating idle times and doing some simple adjacent
pairwise exchange moves on the results. The adaptation of the NEH
heuristic of Nawaz et al. [27] produced the best results. Saadani et al.
[45] presented a method based on heuristics for the traveling sales-
man problem denoted as SGM. This research was later published in
paper form in Saadani et al. [47]. The three machine case was studied
by Saadani et al. [46] to be improved on later by Kalczynski and
Kamburowski [19]. Heuristics for special cases with dominating
machines are studied by Narain and Bagga [25,26].

The general m-machine NPFSP with makespan criterion has been
approached with successful heuristics by several authors. For example,
[18] presented a method based on Johnson's heuristic, denoted as KK
that was shown to outperform an adaptation of the NEH heuristic to
the no-idle setting and the method of Saadani et al. [47]. A local search
insertion method proposed by Baraz and Mosheiov [4] is also shown
to outperform that of Saadani et al. [47] and is denoted by GH_BM.

Ruiz et al. [44] presented a comprehensive comparison of
heuristic methods, along with adaptations of the NEH method
and the best heuristics proposed for the PFSP by Rad et al. [37].
The authors also presented an improved GH_BM method.
All methods were tested with and without the accelerations of
the insertion neighborhood presented by Pan and Wang [33,34].
The results of the comprehensive computational and statistical
campaign with a set of 250 instances were clear: the adapted
method FRB3 of Rad et al. [37] and the improved GH_BM2 version,
both with accelerations produced the best results.

As regards metaheuristics, the first papers are by Pan and Wang
[33,34]. In the first, the authors present a discrete particle swarm
optimization method, referred to as HDPSO. In the second a
discrete differential evolution method is presented (DDE). Both
papers are heavily based on insertion local search and an impor-
tant result is given: an acceleration of the calculation of the explora-
tion of this neighborhood. Similar towhat Taillard [49] did, the authors
explain a set of calculations to reduce the complexity of the calculation
of a pass in the insertion neighborhood from Oðn3mÞ to Oðn2mÞ in
the NPFSP. The authors hybridized their methods with the Iterated
Greedy algorithm of Ruiz and Stützle [42] and demonstrated in
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