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a b s t r a c t

We present an explicit algorithm to compute a closed basis of the
local dual space of I = ( f1, . . . , ft) at a given isolated singular
solution x̂ = (x̂1, . . . , x̂s) when the Jacobian matrix J(x̂) has
corank one. The algorithm is efficient both in time and memory
use. Moreover, it can bemodified to compute an approximate basis
if the coefficients of f1, . . . , ft and x̂ are only known with limited
accuracy.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Motivation and problem statement. Consider an ideal I generated by a polynomial system F =

{ f1, . . . , ft}, where fi ∈ C[x1, . . . , xs], i = 1, . . . , t . For a given isolated singular solution x̂ =

(x̂1, . . . , x̂s) of F , suppose Q is the isolated primary component whose associate prime is P = (x1 −

x̂1, . . . , xs−x̂s). In (Wu and Zhi, 2008), we used the symbolic–numericmethod based on the geometric
jet theory of partial differential equations introduced in (Reid et al., 2003; Zhi and Reid, 2004; Bonasia
et al., 2004) to compute the index ρ, the minimal nonnegative integer such that Pρ

⊆ Q , and the
multiplicity µ = dim(C[x]/Q ), where Q = (I, Pρ). A basis for the local dual space of I at x̂ is
obtained from the null space of the truncated coefficient matrix of the involutive system. The size
of these coefficient matrices is bounded by t


ρ+s
s


×


ρ+s
s


which will be very big when ρ or s is large.

In general, ρ ≤ µ. However, when the corank of the Jacobian matrix is one, then ρ = µ, which is also
called the breadth one case in (Dayton and Zeng, 2005; Dayton et al., 2009). The size of the matrices
grows extremely fast with the multiplicity µ. As pointed out in (Zeng, 2009), the matrix size becomes
the main bottleneck that slows down the overall computation. This is the main motivation for us to
consider whether we can compute the multiplicity structure of x̂ efficiently in this worst case.

In (Dayton and Zeng, 2005; Dayton et al., 2009), they presented an efficient algorithm for
computing a dual basis for the breadth one case by solving a deflated system of size roughly (µt) ×
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(µs). A general construction of a Gauss basis of differential conditions at a multiple point was also
given in (Marinari et al., 1996, Section 4.3), the breadth one case is just a special case. The size of linear
systems they constructed is bounded by (µt) × (µs), and they assumed that I is a zero dimensional
system. In (Stetter, 2004, Section 8.5), an algorithmic approach for determining a basis of the local dual
space incrementally was stated and some examples were given to show that only a sizable number of
free parameters are needed when we compute the k-th order differential condition.

Main contribution. In the breadth one case, following Stetter’s arguments and smart strategies given
in (Stetter, 2004, Section 8.5), we prove that the number of free parameters used in computing
each order of the differential condition of I at x̂ can be reduced to s − 1. So that we can compute
the multiplicity structure of an isolated multiple zero x̂ very efficiently by solving µ − 2 linear
systems with size bounded by t × (s − 1). Moreover, during the computation, we only need to store
polynomials, the LU decomposition of the last s−1 columns of the Jacobianmatrix and the computed
differential operators. Therefore, in the breadth one case, both storage space and execution time for
computing a closed basis of the local dual space are reduced significantly. Furthermore, we modify
the algorithm for computing an approximate basis when singular solutions and polynomials are only
known approximately.

Structure of the paper. Section 2 is devoted to recalling some notations and well-known facts.
In Section 3, we prove that for the breadth one case, a closed basis of the local dual space of I
at x̂ can be constructed incrementally by checking whether a differential operator parameterized
by s − 1 variables is consistent with polynomials in I . In Section 4, we describe an algorithm for
computing a closed basis of the local dual space of I at x̂ and the multiplicity µ. If I and x̂ are only
known with limited accuracy, then we modify the symbolic algorithm by introducing one more
parameter and using singular value decomposition or LU decomposition with pivoting to ensure the
numeric stability of the algorithm. Three examples are given to demonstrate that our algorithms are
applicable to positive dimensional systems, analytic systems and polynomial systems with irrational
or approximate coefficients. The complexity analysis and experiments are done in Section 5. We
mention some ongoing research in Section 6.

2. Preliminaries

Suppose we are given an isolated multiple root x̂ of the polynomial system F = { f1, . . . , ft} with
multiplicity µ and index ρ.

Let D(α) = D(α1, . . . , αs) : C[x] → C[x] denote the differential operator defined by:

D(α1, . . . , αs) :=
1

α1! · · · αs!
∂xα1

1 · · · ∂xαs
s ,

for non-negative integer array α = [α1, . . . , αs]. We write D = {D(α), |α| ≥ 0} and denote by
SpanC(D) the C-vector space generated by D and introduce a morphism on D that acts as ‘‘integral’’:

Φj(D(α)) :=


D(α1, . . . , αj − 1, . . . , αs), if αj > 0,
0, otherwise.

As a counterpart of the anti-differentiation operator Φj, we define the differentiation operator Ψj
as

Ψj(D(α)) := D(α1, . . . , αj + 1, . . . , αs).

Definition 1. Given a zero x̂ = (x̂1, . . . , x̂s) of an ideal I = ( f1, . . . , ft), we define the local dual space
of I at x̂ as

△x̂(I) := {L ∈ SpanC(D)| L( f )|x=x̂ = 0, ∀f ∈ I}. (1)
The vector space △x̂(I) and conditions equivalent to L( f )|x=x̂ = 0, ∀L ∈ △x̂(I) are also called Max
Noether space and Max Noether conditions in Möller and Tenberg (2001) respectively.

For a non-negative integer k,△(k)
x̂ (I) consists of differential operators in△x̂(I)with the differential

order bounded by k. We have that dimC(△x̂(I)) = µ, where µ is the multiplicity of the zero x̂.
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