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Abstract

In this paper the classical Hamming network is generalized in various ways. First, for the Hamming maxnet, a generalized model is

proposed, which covers under its umbrella most of the existing versions of the Hamming Maxnet. The network dynamics are time varying

while the commonly used ramp function may be replaced by a much more general non-linear function. Also, the weight parameters of the

network are time varying. A detailed convergence analysis is provided. A bound on the number of iterations required for convergence is

derived and its distribution functions are given for the cases where the initial values of the nodes of the Hamming maxnet stem from the

uniform and the peak distributions. Stabilization mechanisms aiming to prevent the node(s) with the maximum initial value diverging to

infinity or decaying to zero are described. Simulations demonstrate the advantages of the proposed extension. Also, a rough comparison

between the proposed generalized scheme as well as the original Hamming maxnet and its variants is carried out in terms of the time required

for convergence, in hardware implementations. Finally, the other two parts of the Hamming network, namely the competitors generating

module and the decoding module, are briefly considered in the framework of various applications such as classification/clustering, vector

quantization and function optimization.
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1. Introduction

The Hamming network, was originally presented in

(Steinbuch, 1961; Steinbuch & Piske, 1963; Taylor, 1964)

as an associative memory model and has come into the

scene again through (Baum, Moody, & Wilczek, 1987;

Lippmann, 1987). Since then, it has been studied by several

researchers. The Hamming network as an associative

memory network has been analyzed in Floreen (1991).

The architecture of the Hamming network is shown in

Fig. 1. It consists of three modules. The competitors

generating module (CGM) is content dependent and

produces a set S of M non-negative numbers that compete

with each other. For example, in the associative memory

and vector quantization context, these numbers are the

matching scores between an input vector to the network and

each one of the M stored vectors. In the function

optimization context, these numbers are the values of the

function at given points. The decoding module (DM) takes

as input the output of the Hamming maxnet and shapes it so

as to match the requirements of the application at hand.

The CGM and DM modules are briefly discussed in the

framework of certain application areas at the end of the

present work.

In the present paper we first focus on the second module

of the Hamming network, the Hamming maxnet (HMN)

(see Fig. 2). The HMN consists of two layers of nodes. The

first layer includes M nodes and has a recurrent structure

(i.e. each node takes input from all the nodes of the same

layer including itself). The initial state is formed by the

outputs of the competitors generating module. Once

convergence is established, it reads out an M-dimensional

vector having all coordinates equal to zero except one which

is positive and corresponds to the node with the maximum

initial value.
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The state of a node at time t is denoted by xi(t), iZ0,.,

MK1. In its original version, the weight from a node to

itself equals 1 and the weight from a node to any other node

equals K3, where 3 is chosen to be a positive constant less

than 1/(MK1) (Koutroumbas & Kalouptsidis, 1994;

Lippmann, 1987). The nodes are updated via the following

equation

xiðt C1Þ Z f ðHiðt C1ÞÞ; i Z 0;.;M K1 (1)

where

HiðtC1ÞZxiðtÞK3
XMK1

mZ0; msi

xmðtÞ; i Z0;.;M K1; (2)

and f is the ramp function, i.e. f(x)Zmax(x,0). A

prerequisite for reliable operation of the HMN is to have

at least one node with positive initial value and only a single

node with maximum initial value. In addition, Eq. (2)

indicates that the parallel mode of operation is employed,

that is all nodes are updated simultaneously. Different

versions of the HMN where not all nodes are updated

synchronously are discussed in (Koutroumbas, 1995;

Koutroumbas and Kalouptsidis, 1994). In the extreme case

where each node is updated asynchronously to the others, it

is guaranteed that the network identifies only one of

possibly more nodes with maximum initial value.

The second layer of the HMN consists of M threshold

nodes each fed by the output of the corresponding node of

the previous layer. A node of this layer outputs 1 if its input

is positive and 0 otherwise.

In Koutroumbas and Kalouptsidis (1994) a detailed

theoretical analysis of both parallel and partially parallel

modes of operation of the HMN is provided. Various

generalizations of the multiplying coefficients are discussed

in Koutroumbas (1995). Stabilization methods in conjuction

with accelerating convergence techniques are also discussed

in Koutroumbas (1995). The complete solution of the HMN

is provided for the fully parallel mode of operation in Sum

and Tam (1996).

Hardware implementations of the Hamming networks

are presented in He, Cilingiroglu, and Sinencio (1993) and

Robinson, Yoneda, and Sinencio (1992). Finally, efficient

implementations of recurrent networks on silicon are

developed in Hahnloser, Sarpeshkar, Mahoward, Douglas,

and Seung (2000).

One of the major drawbacks of the HMN is its slow

convergence. Significant effort has been undertaken by

several researchers to address this issue. In this spirit a

modified version of the HMN that is much faster than the

original one is discussed in Yen and Chang (1992) and

Yadid-Pecht and Gur (1995). In this case, 3 does not

remain constant but is adjusted at each iteration as follows:

3(t)Z1/M(t), where M(t) is the number of the nodes with

positive value at the tth iteration.

Alternative methods for accelerating convergence of

HMN in terms of the number of iterations at the cost of

increased computational complexity per iteration are devel-

oped in Yang, Chen, Wang, and Lee (1995) and Yang and

Chen (2000). The resulting networks are referred to as

GEMNET and HITNET. The main idea here is to subtract

from each node the highest possible value from all nodes.

Such values are determined on the basis of assumptions on

the probability distribution that generates the members of S.

These methods achieve further improvement compared to

the above discussed modified version of HMN, in terms of the

number of iterations. However, as far as the HITNET is

concerned, there is always the possibility of over-inhibition,1

even in cases where the original maxnet would succeed. The

dynamics of GEMNET and HITNET are given by

xiðt C1Þ Z f gxiðtÞK
g

MðtÞ=bðtÞK1

XMK1

jZ0

xjðtÞ;

 !

i Z 0;.;M K1:

(3)

f and M(t) are defined as above, gR1 and b(t) is greater than 1

for HITNET and equal to 1 for GEMNET.

A weakness of the original HMN as well as its variants

discussed above, is their inability to work properly when

there are two or more nodes with maximum initial value.

This situation is met frequently in applications where the

elements of S stem from a discrete domain. For example,

in the associative memory application M binary vectors, yi,

Fig. 1. The general architecture of the Hamming maxnet.

Fig. 2. The original Hamming maxnet.

1 The case where all nodes are led to zero after a finite number of

iterations.
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