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Abstract

We introduce a new type of neural network—the dynamic wave expansion neural network (DWENN)—for path generation in a dynamic

environment for both mobile robots and robotic manipulators. Our model is parameter-free, computationally efficient, and its complexity

does not explicitly depend on the dimensionality of the configuration space. We give a review of existing neural networks for trajectory

generation in a time-varying domain, which are compared to the presented model. We demonstrate several representative simulative

comparisons as well as the results of long-run comparisons in a number of randomly-generated scenes, which reveal that the proposed model

yields dominantly shorter paths, especially in highly-dynamic environments.
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1. Introduction

One of the major challenges in the development of

intelligent robotic systems is endowing them with an ability

to plan motions and to navigate autonomously. This ability

becomes critical particularly for robots which operate in

dynamic environments, where unpredictable and sudden

changes may occur. Whenever the robot’s sensory system

detects a dynamic change, its planning system has to adapt

the path accordingly. Prominent examples are real world

environments that involve interaction with people, like

museums, shops, or households. Usually, it is required that

the path of a robot is safe (i.e. collision-free), optimal or

close to optimal, and natural, i.e. in a complex situation the

robot does not get lost and goes far away from its

destination.

Different types (and complexity levels) of the path

planning problem can be distinguished (Fig. 1). The simplest

problem is, given the exact description of the environment,

to find a continuous path from a starting location to a target

location. There exists a number of global approaches, such as

decomposition, road-map, and retraction methods (Latombe,

1991; Hwang & Ahuja, 1992; Henrich, 1997), randomised

approaches (Kavraki, Svestka, Latombe, & Overmars, 1996;

Barraquand et al., 1997; Song, Thomas, & Amato, 2003),

genetic algorithms (Paredis & Westra, 1997; Mazer,

Ahuactzin, & Bessière, 1998; Eldershaw & Cameron,

2000), as well as several local approaches, e.g., potential

field methods (Khatib, 1986; Barraquand & Latombe, 1991)

to solve this problem. Usually, global approaches require a

preprocessing stage, during which a graph structure contain-

ing the information about the connectivity of the robot’s free

space is formed, before the path search can be performed.

Local methods need some heuristics, as, e.g. the estimation

of local gradients in a potential field to provide an effective

path search.

If the environment is dynamic (i.e. if obstacles and/or the

target are moving), then two cases are possible. If

trajectories of obstacles are known in advance and the

robot dynamics is not considered (like for free-flying

objects), the problem is reduced to the stationary case by

adding the time axis to the planning space (moving obstacles
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become stationary in the new space; Latombe, 1991).

There exist also a number of methods, which account for the

constraints on the robot dynamics during the planning (see,

e.g. Fiorini and Shiller (1998), Fraichard and Laugier

(1993), and Hsu, Kindel, Latombe, and Rock (2002)). For

the most complex case, when obstacle placements/trajec-

tories are unknown in advance, there exist much fewer

approaches. Obstacles in that case are detected locally

during the robot movement and are dynamically incorpor-

ated into the path generation process, which often makes

global approaches with replanning computationally

demanding. In Zelinsky (1992), for instance, the whole

path is replanned from scratch each time the robot bumps

into an obstacle. Koenig and Likhachev (2002) and Stentz

(1995) proposed graph-search algorithms which utilise the

information from previous searches to accelerate the

replanning. The algorithms in Lumelsky and Stepanov

(1986) guarantee to find a path to the target (if one exists) in

an unknown stationary environment based on the local

‘tactile’ input. Other approaches (Bennewitz, Burgard, &

Thrun, 2003; Miura, Uozumi, & Shirai, 1999; Yu & Su,

2001) try to predict and to approximate the movement of

obstacles in the workspace, which reduces the problem to the

previous case. Several neural network models for path

generation in a non-stationary environment have been

proposed, which are surveyed in Section 2 and evaluated

in simulations in Section 4. Generally, the local nature of

these methods allows to integrate the information about

changes in the environment into the path generation process

in an efficient way, such that real-time planning is possible in

many situations.

In this paper, we present a novel type of neural

network—the dynamic wave expansion neural network

(DWENN)—which is capable of generating dynamic

distance potentials for real-time path planning in a time-

varying environment. This model can be applied to all

aforementioned types of the path planning problem. The

underlying idea of the DWENN algorithm is to organise

wave propagation in a way similar to waves in water

spreading, for instance, around a dropped stone. The

neurons of the network are arranged in a regularly

discretised lattice. In our model a scalar potential field is

formed by repetitively generated waves of neural activity,

which originate from the target location. Each subsequent

wave ‘brings’ an updated distance information from the

target, and increases the potential of lattice nodes in such a

way that farther (from the target) neurons accumulate larger

activity values. If at some instance of time a location is not

reached by the actual wave front, it is regarded as

untraversable for the robot.

To prevent local minima problems, in our model the

propagation of inhibitory waves (waves of zero activity) is

triggered in particular situations to temporarily interrupt the

planning process, and thus to avoid undesired path

oscillations. The robot then waits several time steps until

a new activity wave reaches its position from an appropriate

direction, and then continues to move. Thus, no replanning

from scratch is needed, since the potential field adapts to

changes in the environment dynamically and rapidly. The

DWENN’s update rules are computationally very efficient,

and its state equations are parameter-free. Preliminary

versions of the model have been reported in Lebedev, Steil,

and Ritter (2002, 2003a,b). In Lebedev et al. (2003b), we

have shown that DWENN can be viewed (with minor

simplifications) as a dynamic version of the distance

transform algorithm (Zelinsky, 1992), used for path

planning in stationary environments.

The paper is organised as follows. Section 2 provides a

taxonomy and review of existing neural network approaches

for path planning with particular attention to neural network

models for trajectory generation in a time-varying domain.

In Section 3 we describe the proposed DWENN model and

analyse its dynamics. Comparative simulation studies and a

complexity analysis are presented in Section 4, and, finally,

conclusions are discussed in Section 5.

Nomenclature

C3R
N robot’s configuration space

N the number of robot’s degrees-of-freedom

si the neighbourhood of the ith neuron in the

network field

xi activity level of neuron i

Ii the external input of neuron i

g($) the transfer function of a neuron

dij the Kronecker symbol
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Fig. 1. The path planning problem at two extremes: (a) The simple problem:

to find a path from the start to the target in a stationary environment with a

given description of obstacles. (b) The complex problem: the environment

is initially unknown and the information about (potentially moving)

obstacles is acquired during the motion. To get a reasonable path in a time-

varying environment and to escape possible local minima effects, this

information has to be efficiently integrated into the path planning process.
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