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Interpreting hippocampal function as recoding and forecasting

William B Levya,*, Ashlie B. Hockinga,b, Xiangbao Wua

aDepartment of Neurosurgery, University of Virginia Health System, P.O. Box 800420, Neurosurgery, Charlottesville, VA 22908-0420, USA
bDepartment of Computer Science, University of Virginia, Charlottesville, VA, USA

Abstract

A model of hippocampal function, centered on region CA3, reproduces many of the cognitive and behavioral functions ascribed to the

hippocampus. Where there is precise stimulus control and detailed quantitative data, this model reproduces the quantitative behavioral

results. Underlying the model is a recoding conjecture of hippocampal computational function. The expanded conjecture includes a special

role for randomization and, as recoding progresses with experience, the occurrence of sequence learning and sequence compression. These

functions support the putative higher-order hippocampal function, i.e. production of representations readable by a linear decoder and suitable

for both neocortical storage and forecasting. Simulations confirm the critical importance of randomly driven recoding and the neurocognitive

relevance of sequence learning and compression. Two forms of sequence compression exist, on-line and off-line compression: both are

conjectured to support neocortical encoding of context and declarative memory as described by Cohen and Eichenbaum (1993).
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1. The theory

The fundamental observations of Milner (1972) con-

cerning hippocampal function and its subsequent refinement

by Cohen and Squire (1980) and by Cohen and Eichenbaum

(1993) direct our ideas about hippocampal function

concerning learning and declarative memory. Based on

their ideas and observations as well as the anatomical

relationship of the hippocampus with neocortex and the

intrinsic anatomy of the hippocampus itself, we have

concentrated on a recoding theory of hippocampal function

(Levy, 1985, 1989, 1990a, 1994). At the same time, the

animal literature, with its emphasis on spatial, contextual,

and configural learning, led us (Levy, 1989) to include a

sequence prediction aspect to this theory as we incorporated

the insights of Hirsh (1974), Kesner and Hardy (1983),

O’Keefe and Nadel (1978), and eventually Rudy and

Sutherland (1995).

Thus, our theory (Levy, 1989) arises from the confluence

of several ideas: the basic function of the hippocampus as a

cognitive map; the particular anatomy and detailed

connectivity of the hippocampus (sparse recurrence in

CA3 with divergence of entorhinal cortex (EC) inputs and

recurrent signals vs. convergence coming out of CA3 via the

sequential projections to CA1, subiculum, and EC);

the general need for a device to find associations that the

neocortex would have trouble creating due to a lack of

connectivity (Levy, 1994); and last but not least, the need to

encode correlations across behaviorally relevant time-spans

for the purpose of forecasting. Thus, the combination of

these perspectives leads to a hippocampal theory that

conceptualizes a sequence learning device, as well as

conjecturing a random recoder.

Others who model hippocampal function as sequence

learning include Abbott and Blum (1996), Hasselmo’s

laboratory, e.g. Hasselmo et al. (2002), Mehta et al. (1997),

Molyneaux and Hasselmo (2002), Schmajuk (2002),

Treves (2004), and Tsodyks et al. (1996). On the other

hand, McClelland et al. (1995), and Rolls et al. (1997)

advocate more conventional pattern recognition models. In

terms of pattern recall, speed of convergence is quite rapid

for the integrate-and-fire model (Panzeri et al. 2001; Rolls

and Treves, 1998; Treves, 1993; Treves et al., 1997).

Moreover, recently the Rolls’ laboratory has begun to

investigate sequence learning in their models (Stringer

et al., 2004). From our viewpoint, almost all neurons are
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pattern recognition devices. Therefore, there is no

argument about the existence of this ability in the

hippocampus. Rather, sequence-learning models have

pattern recognition as one of several capabilities (see

Levy, 1996 for a summary).

To establish and refine the viability of our theoretical

perspective, we have produced a series of computer

simulations. The first successful simulations of sequence

learning were reported in Minai and Levy (1993b) and

Minai et al. (1994). More recently we have been able to

move beyond such qualitative observations. Our hippocam-

pal model is now able to reproduce the quantitative data of

hippocampal-dependent phenomena where the relevant

stimuli are under precise control (see Appendix A). Here,

we emphasize the stochastic dependence of the recoding

dynamics.

The fundamental recoding by the hippocampal formation

occurs in the CA3 subregion of the hippocampus (Levy,

1989). Therefore, we study hippocampal function with

models that emphasize this subregion.

2. A family of models

Instead of a single model, we use a family of CA3

models. All the members of this family share certain basic

biological properties that are summarized in Table 1. The

primary neurons are spike passing, i.e. communication is

binary {0,1}. Where we use McCulloch-Pitts neurons, the

updating of internal excitation and the axonal communi-

cation lag are the same. This is not true for models using

integrate-and-fire neurons. The input layer (Fig. 1a) is a

merging of the entorhinal cortex (EC) and dentate gyrus

(DG) inputs to CA3. Fundamentally, the CA3 model is a

sparsely interconnected feedback network (Fig. 1b), typi-

cally with thousands of neurons in a simulation. All direct,

recurrent connections between primary cells are excitatory.

There is an interneuron mediating feedforward inhibition,

and one mediating feedback inhibition. Inhibition is of the

divisive form, but activity in the free-running models is only

imperfectly controlled because of a delay in the feedback

that activates these inhibitory neurons.

To date, region CA3 is modeled as a randomly connected

network. Each excitatory neuron randomly connects to

approximately n$c other neurons, where n is the number

of neurons and c is the connectivity ratio (usually set to

0.1 but lower connectivities also work, e.g. Levy et al.,

2005; Sullivan and Levy, 2004). Given the output of neuron

i at time t, here zi(t), the net internal excitation of neuron

j, yj(t), is

where wij represents the weight value between neurons i and

j at time tK1, and cij is a binary variable {0,1}, indicating

whether or not there is a connection from neuron i to j. The

term
P

wijcijfðziðtK1ÞÞ represents the excitatory synaptic

conductance for the jth neuron. Parameters KFB and KFF are

constants that scale the feedback and feedforward inhi-

bitions, respectively. The constant K0 controls the magni-

tude and stability of activity oscillations and is analogous to

a shunting rest conductance (Smith et al., 2000). Weights wiI

are the positively valued synaptic strengths between each

pyramidal cell i and the feedback inhibitory neuron at time

tK1. The binary external input to neuron j at time t is

indicated by xj(t). If either xj(t)Z1 or yj(t)Rq, neuron j fires

(i.e. zj(t)Z1), where q is a threshold fixed at 0.5.

Synaptic failures can be included via a synaptic failure

channel represented by the function f(zj(t)) for the

connection from neuron i to neuron j (Sullivan & Levy,

2003a, 2004). Here, f(zjZ0)Z0. A synaptic failure, f(zjZ
1)Z0, occurs with probability f, and successful synaptic

activation, f(zjZ1)Z1, with probability (1Kf); i.e. the

failure process is a Bernoulli random variable that acts

independently on each synapse at each time-step. The

addition of failures allows successful simulations to run at

lower activity levels (Sullivan and Levy, 2004).

The model uses a biologically-inspired postsynaptic

associative modification rule with potentiation and

Table 1

A minimal hippocampal CA3 model

1 Neurons are threshold elements with inputs that are weighted and summed; the output is binary, a spike

when threshold is exceeded and no spike otherwise

2 Most connections are excitatory

3 Synapses modify associatively based on a local Hebbian rule that is time-spanning between pre-and

postsynaptic activations and includes LTP and LTD-like processes

4 Recurrent excitation is sparse and randomly connected

5 Recurrent excitation is stronger than external excitation

6 One or more randomization processes exist

7 Inhibitory neurons control activity, approximately

8 Activity is low but not too low
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