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Abstract

Numerous methods have already been developed to estimate the information contained in single spike trains. In this article we explore

efficient methods for estimating the information contained in the simultaneous firing activity of hundreds of neurons. Obviously such

methods are needed to analyze data from multi-unit recordings. We test these methods on generic neural microcircuit models consisting of

800 neurons, and analyze the temporal dynamics of information about preceding spike inputs in such circuits. It turns out that information

spreads with high speed in such generic neural microcircuit models, thereby supporting—without the postulation of any additional neural or

synaptic mechanisms—the possibility of ultra-rapid computations on the first input spikes.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Neural microcircuit; Spiking neurons; Information theoretic methods; Neural coding; Computational power; Dynamic synapses; Linear regression;

Bayesian classifier

1. Introduction

Common analytical tools of computational complexity

theory cannot be applied to recurrent circuits with complex

dynamic components, such as biologically realistic neuron

models and dynamic synapses. In this article we explore the

capability of information theoretic concepts to throw light on

emergent computations in recurrent circuit of spiking

neurons (we refer to p. 429 of Panzeri, Rolls, Battaglia, &

Lavis, 2001 for a discussion of advantages in using

information theoretic methods in this context). This approach

is attractive since it may potentially provide a solid

mathematical basis for understanding such computations.

But it is methodologically difficult because of systematic

errors caused by under-sampling problems that are ubiqui-

tous even in extensive computer simulations of relatively

small circuits. Previous work on these methodological

problems had focused on estimating the information in

spike trains, i.e. temporally extended protocols of the activity

of one or a few neurons. In contrast to that this paper

addresses methods for estimating the information that is

instantly available to a neuron that has synaptic connections

to a large number of neurons. The proposed formalism to

study simulated neural circuits has the advantage that it

allows direct comparisons with experimental results on

neural coding. In view of the very large existing literature on

neural coding and relevant applications of information

theory we cannot discuss here the preceding literature in

detail. We refer to Borst and Theunissen (1999), deCharms

and Zador (2000), Hertz (1999), Hertz and Panzeri (2003),

Pola, Schultz, Petersen, and Panzeri (2003), and Rieke,

Warland, van Steveninck, and Bialek (1997) for recent

reviews. The dynamics of information in neural circuit

models has previously been studied in Panzeri et al. (2001).

In that study the speed of pattern completion was studied in a

circuit model consisting of very realistic neuron models but

static synapses. The network inputs consisted there of spatial

patterns encoded by step currents, which represented

fragments of more complete patterns from a fixed set of

spatial patterns. Nevertheless, the results reported in that

article about the speed of information processing are quite

consistent with those reported in this article for the case

where the network input consists of spike trains, and the

fusion of information from several segments of these spike
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inputs is examined (rather than the fusion of information

between static input patterns and information stored in

synaptic weights as in Panzeri et al., 2001).

We will define the specific circuit model used for our

study in Section 2 (although the methods that we apply

appear to be useful for to a much wider class of analog and

digital recurrent circuits). The combination of information

theoretic methods with methods from machine learning that

we employ is discussed in Section 3. The results of

applications of these methods to the analysis of the

distribution and dynamics of information in a generic

recurrent circuit of spiking neurons are presented in

Section 4. Applications of these methods to the analysis of

emergent computations are discussed in Section 5.

2. Our study case: a generic neural microcircuit model

As our study case for analyzing information in high-

dimensional circuit states we used a randomly connected

circuit with sparse, primarily local connectivity consisting

of 800 leaky integrate-and-fire (I&F) neurons, 20% of which

were randomly chosen to be inhibitory. Constants of

neurons and synaptic parameters were chosen to reflect

the diversity of parameters reported in experimental studies

(see Destexhe & Marder, 2004 for a discussion).1 The 800

neurons of the circuit were arranged on two 20!20 layers

L1 and L2.2 Circuit inputs consisting of five spike trains

were injected into a randomly chosen subset of neurons in

layer L1 (the connection probability was set to 0.25 for each

of the five input channels and each neuron in layer L1). We

modeled the (short term) dynamics of synapses according to

the model proposed in Markram, Wang, and Tsodyks

(1998), with the synaptic parameters U (use), D (time

constant for depression), F (time constant for facilitation)

randomly chosen from Gaussian distributions that model

empirical data for such connections. Parameters of neurons

and synapses were chosen as in Maass et al. (2002) to fit

data from microcircuits in rat somatosensory cortex (based

on Gupta, 2000; Markram et al., 1998).

Since neural microcircuits in the nervous system often

receive salient input in the form of spatio-temporal firing

patterns (e.g. from arrays of sensory neurons, or from other

brain areas), we have concentrated on circuit inputs of this

type. Such firing pattern could for example represent visual

information received during a saccade, or the neural

representation of a phoneme or syllable in auditory cortex.

Information dynamics and emergent computation in

recurrent circuits of spiking neurons were investigated for

input streams over 800 ms consisting of sequences of noisy

versions of four of such firing patterns. We restricted our

analysis to the case where in each of the four 200 ms

segments one of two template patterns is possible, see

Fig. 1. In the following, we write siZ1 (siZ0) if a noisy

version of template 1 (0) is used in the ith time segment of

the circuit input.

Fig. 2 shows the response of a circuit of spiking neurons

(drawn from the distribution specified above) to the input

stream exhibited in Fig. 1B. Each frame in Fig. 2 shows the

current firing activity of one layer of the circuit at a particular

point t in time. Since in such rather small circuit (compared

for example with the estimated 105 neurons below a square

millimeter of cortical surface) very few neurons fire at any

given millisecond, we have replaced each spike by a pulse

whose amplitude decays exponentially with a time

constant of 30 ms. More precisely, the spike train from

each presynaptic neuron was convolved with the kernel

eKt/30 ms. This models the impact of a spike on the receptors

and the membrane potential of a generic postsynaptic neuron.

The resulting vector r(t)Zhr1(t),.,r800(t)i consisting of 800

analog values from the 800 neurons in the circuit is exactly

the ‘liquid state’ of the circuit at time t in the context of the

abstract computational model introduced in Maass et al.

(2002). In the subsequent sections, we will analyze the

temporal dynamics of the information contained in these

momentary circuit states r(t).3

3. Methods for analyzing the information contained

in circuit states

The mutual information MI(X, R) between two random

variables X and R can be defined by MI(X, R)Z
H(X)KH(XjR), where HðXÞZK

P
x2RangeðXÞpðxÞlog pðxÞ is

the entropy of X, and H(XjR) is the expected value (with

regard to R) of the conditional entropy of X given R, see e.g.

Cover and Thomas (1991). It is well known that empirical

estimates of the entropy tend to underestimate the true

entropy of a random variable (see e.g. Panzeri & Treves,

1 Neuron parameters: membrane time constant 30 ms, absolute refrac-

tory period 3 ms (excitatory neurons), 2 ms (inhibitory neurons), threshold

15 mV (for a resting membrane potential assumed to be 0), reset voltage

13.5 mV, constant nonspecific background current IbZ13.5 nA, input

resistance 1 MU.
2 Connectivity structure: We assumed that the neurons were located on

the integer points of a three-dimensional grid in space, where D(a, b) is the

Euclidean distance between neurons a and b. The probability of a synaptic

connection from neuron a to neuron b (as well as that of a synaptic

connection from neuron b to neuron a) was defined as C exp(KD2(a, b)/l2),

where l is a parameter which controls both the average number of

connections and the average distance between neurons that are synaptically

connected (we set lZ2, see Maass et al., 2002 for details). Depending on

whether a and b were excitatory (E) or inhibitory (I), the value of C was 0.3

(EE), 0.2 (EI), 0.4 (IE), 0.1 (II).

3 One should note that these circuit states do not reflect the complete

current state of the underlying dynamical system, only those parts of the

state of the dynamical system that are in principle ‘visible’ for neurons

outside the circuit. The current values of the membrane potential of neurons

in the circuit and the current values of internal variables of dynamic

synapses of the circuit are not visible in this sense.
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