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a b s t r a c t

A new ultra-least squares (ULS) criterion is introduced for system identification. Unlike the standard
least squares criterion which is based on the Euclidean norm of the residuals, the new ULS criterion is
derived from the Sobolev space norm. The new criterion measures not only the discrepancy between the
observed signals and the model prediction but also the discrepancy between the associated weak
derivatives of the observed and the model signals. The new ULS criterion possesses a clear physical
interpretation and is easy to implement. Based on this, a new Ultra-Orthogonal Forward Regression
(UOFR) algorithm is introduced for nonlinear system identification, which includes converting a least
squares regression problem into the associated ultra-least squares problem and solving the ultra-least
squares problem using the orthogonal forward regression method. Numerical simulations show that the
new UOFR algorithm can significantly improve the performance of the classic OFR algorithm.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

System identification plays a more important role in revealing the
unknown mechanisms and rules underlying complex phenomena [1].
System identification includes the detection of the model structure
and estimation of the associated parameters. A system identification
problem can often be thought of as an optimisation problem where
the optimal model is searched from a large predefined candidate
model dictionary, given a criterion. The criterion is used to evaluate
the performance of each model by measuring the discrepancy
between the observed data and the model predictions. The candidate
model dictionary is often chosen to be large enough to include the
unknown correct model. Hence an exhaustive search algorithm is
often infeasible in these kinds of applications because of the large
solution space. Even an evolutionary algorithm which can greatly
reduce the search process can still be very computationally intensive.
Hence an algorithm which can efficiently find the optimal solution is
desired. However, a fast algorithm often dictates an optimal substruc-
ture; otherwise the search may converge to a suboptimal solution.
Many efforts have been made to improve the search process under a
certain specific loss function or performance index, for example, the
simulated annealing algorithm, particle swarm optimisation, and so
on. In this paper, a different and newmethodology will be introduced.

Instead of improving the search method, a new and effective criterion
will be introduced to describe the objective of the regression more
accurately. Under the new criterion, the solution space has a better
structure and a fast algorithm is more likely to find the optimal
solution.

System identification aims to identify a model from observed
data based on a criterion. A good criterion results in not only
better parameter estimation but also a good search path along
which the search process converges quickly to the optimal solu-
tion. Over the years, different criteria have been used in system
identification such as the L2 norm in least squares regression, the
L1 norm in least absolute value regression [2,3], and zero-norm
minimisation [4]. Among these criteria, the least squares criterion
is the most used because of its excellent properties, for example,
least squares estimation can be configured to give estimates which
are unbiased and efficient when the noise satisfies some basic
assumptions. Least squares problem have analytic solutions and
can easily be solved using the QR decomposition technique, and
least squares regression produces unique and numerically robust
solutions. Consequently a large number of system identification
algorithms based on the least squares criterion have been devel-
oped [5–8].

However, the standard least squares method only reveals part of
the information in the observed data. The least squares criterion,
which considers the datum points individually, discards the con-
nections among the datum points especially for the identification of
dynamic systems where the data set are time series which are
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samples of continuous functions of time. These individual datum
points are time dependent and connected with each other through
the derivatives of the time continuous functions, for example, an
ordinary differential equation. Many important characteristics of a
system can be determined by these interconnections. An absence of
this information may lead to over-fitted models in least squares
regression, which can be seen in the motivational example
described in Fig. 1 and discussed in the next section.

The standard least squares regression investigates the problem
of model fitting on the space L2 0; T½ �ð Þ, where 0; T½ � represents the
time span of a signal. The associated Residual Sum of Squares (RSS),
which is the square of the L2 norm of the residual, is used to
measure the fitness of the model. When the model structure is
known, the standard least squares algorithm produces the best
parameters with which the model will be optimal in the sense of
RRS. Considering different model structures, there are plenty of very
different models which give the same fitness for a set of observed
data in the sense of the RSS criterion. In this paper, an alternative
criterion, called ultra-least squares (ULS) criterion will be intro-
duced to characterise the model fitness more accurately. Unlike the
least squares criterion considers the model fitting on the space L2,
the ULS criterion considers the model fitting in a smaller space,
more specifically, the Sobolev space Hm ½0; T �ð Þ [9]. The norm defined
on this space will be modified and used as the ULS criterion for
system identification, where not only residuals but also the asso-
ciated weak derivatives will be used to measure the model fitness.

Usage of the derivatives of the data in system identification has
been studied, especially the identification of continuous time
models [1,10,11]. However, as far as the authors are aware this is
the first study in which the weak derivatives have been combined
with the least squares criterion to build a completely newmetric for
the prediction errors and which used the new metric to improve
the model structure detection in non-linear system identification.

In this paper, the ULS criterion will be combined with the well
known Orthogonal Forward Regression (OFR) algorithm [7] to
construct a new Ultra-Orthogonal Forward Regression (UOFR)
algorithm for nonlinear system identification. The proposed UOFR
algorithm is shown to be very powerful for model structure
detection in many modelling tasks and is more likely to produce
an optimal model.

The remainder of the paper is organised as follows: Section 2
briefly reviews some main results on the Lebesgue space L2 and
the Sobolev space Hm. The ULS criterion will be presented by
modifying the Hm norm in Section 3. The associated solution to the
ultra-least squares problem is then defined, and the new UOFR
algorithm is described in Section 4. Three benchmark examples

are discussed in Section 5 to illustrate the efficiency of the new
UOFR algorithm. Conclusions are finally drawn in Section 6.

2. Problems of least squares regression and model fitting in
Sobolev space

In this section, a motivational example is first given to show the
problems that can arise while using a standard least square
criterion. The reasons which cause these problems will then be
discussed in detail and an alternative criterion will be proposed.

Consider the time series fitting problem shown in Fig. 1. In this
example, three models were identified from an observed signal y
which is represented by a thick solid line in Fig. 1(a). The reproduced
signals by the three models are represented by the curves y1, y2, and
y3 in Fig. 1(a) respectively. Fig. 1(b) shows the different measure-
ments of the model fitness of the three models: the L2 norm and the
Hm m¼ 1;2;3ð Þ norms of the residuals.

From Fig. 1(b), it can be observed that the three models give the
same fitness in the sense of the least squares criterion, which is
presented by the line with the circle marks along the abscissa
in Fig. 1(b), although the reproduced signal y1 looks significantly
different from y2 andy3 in Fig. 1(a).

Fig. 1(b) also shows the measurements of the errors in the sense of
Hmnorms when m¼ 1; 2; 3. It can be observed that the perfor-
mances of the three models under the Hm norms are significantly
different. Model 3 fitted the signal y better than models 1 and 2 did.
The system identification problems consists of finding the function on
Hm ½0; T �ð Þ which best fits the observed data yn

� �
, n¼1, 2,…, N, where

both the data points and the interconnections among the datum
points (described by the weak derivatives) are considered.

This example shows that the least squares criterion which was
defined on the L2 space neglects some very important information in
the observations. This information is crucial for identifying a correct
model. Alternatively, the model fitness can more accurately be
characterised on a smaller space, the Sobolev space Hm, which consists
of all the functions which are L2 integrable and the where up to mth
weak derivatives exist and are also L2 integrable. The new introduced
ULS criterion is a realisation of the Hm norm based on the observations.

The generic least squares regression problem includes deter-
mining the structure of a linear-in-the-parameters model and
estimating the associated coefficients

y¼
Xκ
i ¼ 1

θixiþe ð1Þ

Fig. 1. A motivational example for model fitting of a noisy signal. (a) Observed data and reproduced signals for three different models (b) measurement of the fitness of the
models using different criteria.
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