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a b s t r a c t

A recently new intelligent optimization algorithm called discrete state transition algorithm is considered
in this study, for solving unconstrained integer optimization problems. Firstly, some key elements for
discrete state transition algorithm are summarized to guide its well development. Several intelligent
operators are designed for local exploitation and global exploration. Then, a dynamic adjustment strategy
“risk and restoration in probability” is proposed to capture global solutions with high probability. Finally,
numerical experiments are carried out to test the performance of the proposed algorithm compared with
other heuristics, and they show that the similar intelligent operators can be applied to ranging from
traveling salesman problem, boolean integer programming, to discrete value selection problem, which
indicates the adaptability and flexibility of the proposed intelligent elements.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider the following unconstrained integer
optimization problem

f xmin , 1( ) ( )

where, x x x, , n
n

1= ( … ) ∈ .
Generally speaking, the above optimization problem is NP-

hard, which cannot be solved in polynomial time. A direct method
is to adopt the so-called “divide-and-conquer” strategy, which
separates the optimization problem into several subproblems and
then solve these subproblems step by step. Branch and bound
(B&B), branch and cut (B&C), and branch and price (B&P) belong to
this kind; however, these methods are essentially in exponential
time. An indirect method is to relax the optimization problem by
loosening its integrality constraints to continuity and then solve
the continuous relaxation problem or its Lagrangian dual problem,
including LP-based relaxation, SDP-based relaxation, and Lagran-
gian relaxation. Nevertheless, when rounding off the relaxation
solution, they may cause some infeasibility or can only get
approximate solutions, and when using Lagrangian dual, there

may exist duality gap between the primal and the dual problem
[4,6,8,11].

On the other hand, some stochastic algorithms, such as genetic
algorithm (GA) [1,21], simulated annealing (SA) [9,23], ant colony
optimization (ACO) [3,15], are also widely used for integer opti-
mization problems, which aim to obtain “good solutions” in rea-
sonable time. In terms of the concepts of state and state transition,
a new heuristic search algorithm called state transition algorithm
(STA) has been proposed recently, which exhibits excellent global
search ability in continuous function optimization [24–28]. In [20],
three intelligent operators (geometrical operators) named swap,
shift and symmetry have been designed for discrete STA to solve
the traveling salesman problem (TSP), and it shows that the dis-
crete STA outperforms its competitors with respect to both time
complexity and search ability. In [29], a discrete state transition
algorithm is successfully applied to the optimal design of water
distribution networks. To better develop discrete STA for medium-
size or large-size discrete optimization problems, in the study, we
firstly build the framework of discrete state transition algorithm
and propose five key elements for discrete STA, of which, the
representation of a decision variable, the local and global opera-
tors and the dynamic adjustment strategy are mainly studied. Four
geometrical operators named swap, shift, symmetry and substitute
are designed, which are intelligent due to their adaptability and
flexibility in various types of integer optimization. The mixed
strategies of “greedy criterion” and “risk and restoration in prob-
ability” are proposed, in which, “greedy criterion” and “restoration
in probability” are used to guarantee a good convergence
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performance, and “risk a bad solution in probability” aims to
escape from local optimality. Some applications ranging from
traveling salesman problem, boolean integer programming, to
discrete value selection problem are studied. Experimental results
have demonstrated the effectiveness and efficiency of the pro-
posed method.

The main contribution and novelty of this paper is three-fold,
which can be summarized as follows: (1) a systematic formulation
of discrete state transition algorithm is firstly proposed, including
the state space representation and five key elements; (2) a
dynamic adjustment strategy called “risk and restoration in
probability” is designed to improve the ability to escape from local
optima; (3) the proposed algorithm is successfully integrated with
several classical integer optimization problems.

2. The framework of discrete state transition algorithm

If a solution to a specific optimization problem is described as a
state, then the transformation to update the solution becomes a
state transition. Without loss of generality, the unified form of
generation of solution in discrete state transition algorithm can be
described as
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where, xk
n∈ stands for a current state, corresponding to a solution

of a specific optimization problem; uk is a function of xk and historical
states; Ak (·), Bk (·) are transformation operators, which are usually
state transition matrixes; ⊕ is a operation, which is admissible to
operate on two states; f is the fitness function.

As an intelligent optimization algorithm, discrete state transi-
tion algorithm has the following five key elements:

(1) Representation of a solution: In discrete STA, we choose a special
representation, that is, the permutation of the set n1, 2, ,{ … },
which can be easily manipulated by some intelligent operators.
The reason that we call the operators “intelligent” is due to their
geometrical property (swap, shift, symmetry and substitute),
and an intelligent operator has the same geometrical function
for different types of problems. A big advantage of such a
representation and operators is that, after each state transfor-
mation, the newly created state is always feasible, avoiding the
trouble into rounding off a continuous solution into an integral
one.

(2) Sampling in a candidate set: When a transformation operator is
exerted on a current state, the next state is not deterministic,
that is to say, there are possibly different choices for the next
state. It is not difficult to imagine that all possible choices will
constitute a candidate set, or a “neighborhood”. Then we exe-
cute several times of transformation, called search enforcement
(SE) degree, on current state, to sample in the “neighborhood”.
Sampling is a very important factor in state transition algorithm,
which can characterize the search space and avoid enumeration.

(3) Local exploitation and global exploration: In continuous optimi-
zation, it is quite significant to design good local and global
operators. The local exploitation can guarantee high precision of
a solution and convergent performance of an algorithm, and the
global exploration can avoid getting trapped into local minima
or prevent premature convergence. In discrete optimization, it
is extremely difficult to define a “good” local optimal solution
due to its dependence on a problem's structure, which leads to
the same difficulty in the definition of local exploitation and
global exploration. Anyway, in discrete state transition algo-

rithm, we define a little change to current solution by a trans-
formation as local exploitation, while a big change to current
solution by a transformation as global exploration.

(4) Self-learning and regular communication: State transition algo-
rithm behaves in two styles, one is individual-based, the other is
population-based, which is certainly an extended version. The
individual-based state transition algorithm focuses on self-
learning, in other words, it focuses on designing operators and
dynamic adjustment (details given in the following). Undoubt-
edly, communication among different states is a promising
strategy for state transition algorithm, as indicated in [26].
Through communication, states can share information and
cooperate with each other. However, how to communicate
and when to communicate are key issues. In continuous state
transition algorithm, intermittent exchange strategy was pro-
posed, which means that states communicate with each other at
a certain frequency in a regular way.

(5) Dynamic adjustment: It is a potentially useful strategy for state
transition algorithm. In the iterative process of searching, the
fitness value can decrease sharply in the early stage, but it
stagnates in the late stage, due to the static environment. As a
result, some perturbation should be added to activate the
environment. In fact, dynamic adjustment can be understood
and implemented in various ways. For example, the alternative
use of different local and global operators is a dynamic adjust-
ment to some extent. Then, we can change the search enfor-
cement degree, vary the fitness function, reduce the dimension,
etc. Of course, “risk a bad solution in probability” is another
dynamic adjustment, which is widely used in simulated
annealing (SA). In SA, the Metropolis criterion [12] is used to
accept a bad solution: p E k Texp / B= ( − Δ ), where,

E f fx xk k1Δ = ( ) − ( )+ , kB is the Boltzmann probability factor, T is
the temperature to regulate the process of annealing. In the
early stage, temperature is high, and it has big probability to
accept a bad solution, while in the late stage, temperature is
low, and it has very small probability to accept a bad solution,
which is the key point to guarantee the convergence. We can
see that the Metropolis criterion has the ability to escape from
local optimality, but on the other hand, it will miss some “good
solutions” as well.

In discrete STA, a novel strategy, named “risk and restoration in
probability”, is proposed. Details can be found in the following
individual-based STA.

2.1. Individual-based discrete STA

In this part, we focus on the individual-based discrete STA, and
the main process of discrete STA is shown in the pseudocode as
follows:

1: repeat
2: [Best,fBest] ← swap(n,Best,fBest)
3: [Best,fBest] ← shift(n,Best,fBest)
4: [Best,fBest] ← symmetry(n,Best,fBest)
5: [Best,fBest] ← substitute(n,Best,fBest)
6: if fBest < fBest⁎ then ▹ greedy criterion
7: Best⁎ ← Best
8: fBest⁎ ← fBest
9: end if
10: if rand p1< then ▹ restoration in probability
11: Best ← Best⁎

12: fBest ← fBest⁎

13: end if
14: until the specified termination criteria are met
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