
### Author's Accepted Manuscript

MI-ELM: Highly Efficient Multi-Instance Learning Based on Hierarchical Extreme Learning Machine

Qiang Liu, Sihang Zhou, Chengzhang Zhu, Xinwang Liu, Jianping Yin



www.elsevier.com

PII: S0925-2312(15)01233-3

DOI: http://dx.doi.org/10.1016/j.neucom.2015.08.061

Reference: NEUCOM15993

To appear in: Neurocomputing

Received date: 7 May 2015 Revised date: 28 July 2015 Accepted date: 21 August 2015

Cite this article as: Qiang Liu, Sihang Zhou, Chengzhang Zhu, Xinwang Liu an Jianping Yin, MI-ELM: Highly Efficient Multi-Instance Learning Based of Hierarchical Extreme Learning Machine, *Neurocomputing* http://dx.doi.org/10.1016/j.neucom.2015.08.061

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

#### ACCEPTED MANUSCRIPT

## MI-ELM: Highly Efficient Multi-Instance Learning Based on Hierarchical Extreme Learning Machine

Qiang Liu<sup>a,\*</sup>, Sihang Zhou<sup>a</sup>, Chengzhang Zhu<sup>a</sup>, Xinwang Liu<sup>a</sup>, Jianping Yin<sup>b</sup>

<sup>a</sup>School of Computer, National University of Defense Technology, Changsha 410073, China

#### Abstract

Multi-instance learning (MIL) is one of promising paradigms in the supervised learning aiming to handle real world classification problems where a classification target contains several featured sections, e.g., an image typically contains several salient regions. In this paper, we propose a highly efficient learning method for MI classification based on hierarchical extreme learning machine (ELM), called MI-ELM. Specifically, a double-hidden layers feedforward network (DLFN) is designed to serve as the MI classifier. Then, the MI classification is formulated as an optimization problem. Moreover, the output weights of DLFN can be analytically determined by solving the aforementioned optimization problem. The merits of MI-ELM are as follows: (i) MI-ELM extends the single-layer ELM to be a hierarchical one that well fits for training DLFNs in MI classification. (ii) The input and hidden-layer parameters of DLFNs are assigned randomly rather than tuned iteratively, and the output weights of DLFNs can be determined analytically in one step. Therefore, MI-ELM significantly enhances the efficiency of the DLFN without notable loss of the classification accuracy. Experimental results over several real-world data sets demonstrate that the proposed MI-ELM method significantly outperforms existing kernel methods for MI classification in terms of the classification accuracy and the classification time.

Keywords: Multi-instance learning, hierarchical extreme learning machine, optimization, double-hidden layers feedforward network

Email address: qiangl.ne@hotmail.com (Qiang Liu)

<sup>&</sup>lt;sup>b</sup>State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, China

<sup>\*</sup>Corresponding author.

#### Download English Version:

# https://daneshyari.com/en/article/10326445

Download Persian Version:

https://daneshyari.com/article/10326445

<u>Daneshyari.com</u>