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a b s t r a c t

Spike encoding is the initial yet crucial step for any application domain of Artificial Spiking Neural
Networks (ASNN). However, current encoding methods are not suitable to process complex temporal
signal. Motivated by the modulation relationship found between afferent synaptic currents in biological
neurons, this study proposes a spike phase encoding method for ASNN, which could perform wavelet
decomposition on the input signal, and encode the wavelet spectrum into synchronized output spike
trains. The spike delays in each synchronizing period represent the spectrum amplitudes. The encoding
method was tested in two implementation examples: (a) encoding of human voice records for speech
recognition propose; and (b) encoding of multichannel electroencephalography (EEG) records with the
aim to detect interictal spikes in patients with epilepsy. Empirical evaluations confirm that encoded spike
trains constitute a good representation of the continuous wavelet transform of the original signal, with
the ability to capture interesting features from the input signal.

& 2015 Published by Elsevier B.V.

1. Introduction

The most significant difference between Artificial Spiking
Neural Networks (ASNN) and traditional neural networks is that
information in ASNN is represented by spike trains which are a
series of pulses with timings of interests. There are mainly two
kinds of interpretations developed in signal processing applica-
tions about how information is related to spike trains: (1) the rate
encoding, which assumes that the information is encoded by the
counts of spikes in a short time window; and (2) the spike time
encoding which considers information carried at the exact time of
each pulse in the spike train. Although the mechanisms for data
representation and analysis using biologically-inspired neural
networks is still under development, empirical evidence has
shown that spike time encoding might be more reliable in
explaining experiments on the biology of nervous systems [1,2].

Both rate encoding and spike time encoding essential in ASNN
applications. The easiest way to rate encode an analog signal is to
feed it to a Poisson neuron, which fires output spikes at probability
proportional to its membrane potential, thus making its firing rate
within a short time window proportional to the amplitude of the
input signal. Such an encoding method has been adopted by Spre-
keler et al. [3] and Keer et al. [4] in order to analyze the recurrent
ASNN behaviors. Although Poisson neuron model is simple and

suitable for theoretical analysis, it was rarely implemented in real-
world applications due to its inaccuracy in mapping analog signals
to spike trains. De Garis et al. [5] introduced another rate encoding
method which deconvolves the input signal into its individual spike
responses, so that the post-synaptic potential of the encoded spike
train could be quite similar to the original signal. Schrauwen and
Van Campenhout [6] improved algorithm proposed by De Garis
et al. by optimizing the deconvolution threshold yielding the so-
called Bens Spiker Algorithm (BSA). BSA has been used widely as a
rate encoding method for ASNN applications [7–9]. The major
problem of this type of rate encoding is that an averaging time
window is required for each sampling of the input signal, which as a
consequence limits the temporal resolution of the encoded signals.

In order to overcome this drawback, receptive fields are introduced
by other researchers to improve the temporal resolution [10,11],
where input signals are first decomposed by Gaussian windows with
variant shifts of the window center, and then fed to an array of neu-
rons which convert them to multiple spike trains. Address-Event
Representation (AER) is an asynchronous protocol designed for analog
neural system simulation platforms [12]. However, AER is also referred
to as an encoding method by other groups of researchers [13–15].
When used as an encoding method, encounters of “ON” and “OFF”
events in the input signals are registered by AER to generate corre-
sponding output spikes. The “ON” and “OFF” events in AER indicate
the time when a change in the input signal either exceeds a positive
threshold or fall behind a negative threshold. Under such definition,
AER could be treated as a rate encoding method with regards to the
derivatives of the input signal.
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Synchronized spike time encoding, dubbed as Phase Encoding
(PE), was also widely used in ASNN application. A simple imple-
mentation of PE could be realized by linearly mapping the input
signal to the delay of spikes within each synchronizing period [16].
This implementation of PE requires the input signal either to be
static or vary at frequencies much lower than the synchronizing
frequency. Temporal receptive fields could also be utilized for PE to
improve the encoding resolution [17,18]. To be more biologically
plausible, Rumbell et al. [19] introduced a synchronizing method
which considered spiking neurons as PE units instead of performing
linear mapping between analog values and spike delays. Receptive
fields in this study were applied to the amplitude dimension
instead of the temporal dimension, which yielded good perfor-
mance for static input data. However, PE method which could
accurately encode temporal signals is still under development.

Beside receptive fields, wavelet transform is another useful
approach to pre-process input signals before encoding them into
spike trains. Wavelet transform is commonly used as a preprocessing
method for using ASNN for image classification [20,21] or computer
vision tasks [22,23]. The generated wavelet coefficients are in general
much less variable than the raw signals, which makes it easier for
rating or phase encoding the coefficients into spike trains. However,
current encoding schemes for ASNN which incorporates wavelet
transform all apply wavelet decompositions off-line, and operates
outside the ASNN platform, which makes the encoding scheme
inefficient for encoding prolonged temporal signals.

In this paper, we propose a preprocessing unit for the Leaky
Integrate-and-Fire (LIF) spiking neurons. The assumption is that an
encoding device combining the preprocessing unit with a LIF
neuron could be used to encode analog signals with wide fre-
quency range. We will demonstrate in Section 2 that our pre-
processing unit could decompose the input signal into wavelet
spectrum, and further encode the spectrum amplitude into the
delay amount between output spikes and the clock signals.
Empirical results of PE encoding of two different types of signals
(speech and EEG signals) are provided in Section 2.5, with line-
arity, temporal resolution issues and possible extension of the
encoding method discussed.

2. Methods

In this section, we will demonstrate that an array of specially
designed encoding devices could performwavelet decomposition of
temporal signals. We purposely designed the encoding device by
incorporating a two-stage spike triggered modulate-and-integrate
module with traditional LIF neurons, and made such pre-processing
module compatible with ASNN platform, so that the encoding
device is easy to implement on any ASNN platforms. Inspired by the
multiplication relationship found among afferent synaptic currents
in biological neurons [24], we found that delay synchronized spikes
sent to the two synapses integrated in the special designed LIF
neuron could trigger the wavelet transform of the input signal at
certain time scales, and encode the spectrum amplitudes into
delays between the output fire times and the control spike arriving
times. Simulations in this research were conducted using NEural
Simulation Tool [25] (NEST) with the encoding device implement
and integrate into the simulation kernels.

2.1. LIF encoding

Spiking neuron models are typically a set of Ordinary Differ-
ential Equations (ODE) which attempt to capture the dynamics of
the neuron membrane potential. Different neuron models have
been proposed by researchers to mimic the electrical behaviors of
biological neurons. Among these neuron models, LIF model was

believed to be a reasonable simplification of biological neuron
with balanced accuracy and efficiency. LIF spiking neuron is
described by one-dimensional ODE using the following equations:

τ
duðtÞ
dt

¼ �uðtÞþ τ
Cm

IallðtÞ ð1Þ

where u is the membrane potential, τ and Cm are the time constant
and capacitance of the neuron, respectively, with Iall defining the
overall afferent current. The firing condition and post-fire behavior
of the LIF neuron in (1) can be defined by the following equation:

if u¼ uth and
duðtÞ
dt

40; u’uc ð2Þ

where uth is the firing threshold and uc is the post-fire resetting
potential. Note that a derivative condition is applied to the firing
conditions in the same manner as in Wang et al. [26]. Such deri-
vative condition ensures that the neuron only fires when its
membrane potential in an upward trend crosses the threshold, a
condition which is thus set to avoid accidental fires if the resting
potential of the neuron is higher than its firing threshold.

The stimulation to LIF neuron is typically assumed to be a sum-
mation of all weighted synaptic currents and an external current:

IallðtÞ ¼ IeðtÞþ
X
j

wjIs t�sj
� � ð3Þ

In this equation, IeðtÞ is the external current, IsðtÞ is the shape func-
tion of the post-synaptic current (PSC), sj is the time that the j-th
spike arrives at the synapse, and wj is the connection efficacy cor-
responding to the j-th input spike.

Consider a quasi-static input signal being used as the external
current to the LIF neuron, and no synaptic stimulation was con-
nected, (1) could be solved as

uðtÞ ¼ uc exp �t�tf

τ

 !
þτIeðtÞ 1�exp �t�tf

τ

 !#
Cm=

"
ð4Þ

where tf is the most recent fire time of the LIF neuron. The output
spike interval T is thus a function of Ie as defined below

T ¼ τ ln
ucCm�τIe
uthCm�τIe

� �
ð5Þ

Since the reset potential is usually lower than the threshold uth,
larger Ie yields shorter spike interval and thus higher firing rate
over a short time window. The input signal is rate encoded in this
configuration.

Rumbell et al. [19] suggested a method to generate phase enco-
ded spike train using LIF neurons. A global inhibitory neuron has
been connected to all encoding neurons, so that the reset times of
these neurons are synchronized, and the firing time interval found in
(5) could be converted into the firing delays between neurons.

Encoding methods using LIF neurons however suffer from one
major drawback in that the input signal should be quasi-static in
comparison to the time constant of the LIF neuron. Although
temporal decomposition methods such as Gaussian receptors
could reduce the fluctuation of the input signal, the number of
receptors increase dramatically with increasing frequency of the
input signal, which prevents the encoding method from capturing
fast transients in the input signals.

2.2. Spike triggered modulation

Although linear summation of synaptic currents and external
current as performed in (3) has been widely accepted as a sim-
plified relationship among the afferent stimulations in large scale
ASNN, the interaction between post-synaptic currents was found
to be more complicated in biological nervous system. Koch and
Segev [24] found that biological neurons might approximate sum
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