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a b s t r a c t

Most seizure forecasting employs statistical learning techniques that lack a representation of the network
interactions that give rise to seizures. We present an epilepsy network emulator (ENE) that uses a
network of interconnected phase-locked loops (PLLs) to model synchronous, circuit-level oscillations
between electrocorticography (ECoG) electrodes. Using ECoG data from a canine-epilepsy model (Davis
et al., 2011 [6]) and a physiological entropy measure (approximate entropy or ApEn, Pincus 1995 [21]),
we demonstrate that the entropy of the emulator phases increases dramatically during ictal periods
across all ECoG recording sites and across all animals in the sample. Further, this increase precedes the
observable voltage spikes that characterize seizure activity in the ECoG data. These results suggest that
the ENE is sensitive to phase-domain information in the neural circuits measured by ECoG and that an
increase in the entropy of this measure coincides with increasing likelihood of seizure activity. Under-
standing this unpredictable phase-domain electrical activity present in ECoG recordings may provide a
target for seizure detection and feedback control.

Published by Elsevier B.V.

1. Introduction

Recent combinations of machine-learning based statistical
classifiers [16], advanced information metrics [21], and publicly
available electrocorticography (ECoG) data from patients and
animal models [6,5] have begun to successfully identify bio-
markers that predict seizures. However, specificity remains a
challenge especially with regard to false positives [18,2].

While more data, better recording techniques, and more
advanced classification algorithms will undoubtedly improve sei-
zure prediction, these approaches lack a representation of the
underlying neurophysiology that contributes to epileptic pathol-
ogy. Theoretical and empirical work on epilepsy suggests that run-
away network-level interactions produce the cascade of uncon-
trolled, high frequency oscillations (HFOs) that produce the vol-
tage discharges that characterize seizures [27,13,25]. This mirrors
emerging work on non-pathological brain activity that highlights
the importance of coordinated oscillations for information flow
between different neural processors [9,10,7]. Information routing
in neural networks is often modeled with oscillatory phase

dynamics between different neural populations. These phase-
sensitive neural networks are frequently used to model phenom-
ena such as recognition memory [11,15], wherein oscillations are
used to bind together different memory components by locking
different sub-processors to a target memory state. We reason that
these same techniques could be used to emulate the circuit-level
dynamics between neural populations that contribute to epi-
leptiform activity, thereby identifying the circuit-level oscillatory
cascade that precedes HFOs and seizures. Previous neural network
models of epilepsy [17] have had success in generating seizure-like
activity, and have called attention to the intrinsic difficulty of
seizure prediction due to the underlying chaotic dynamics of sei-
zure generation [1].

In the current work, we present an epilepsy network emulator
(ENE), designed to be sensitive to unpredictable, non-linear fluc-
tuations in the phase of neural communication. The ENE is a
phase-locked loop neural-network (a PLL is a non-linear control
loop that synchronizes the phase of the output signal to the phase
of the input, see [8]) to model coordination between the recorded
voltages from multiple ECoG sites in a canine epilepsy model [6].
In the current study, we lock the network directly to recorded
ECoG voltages gathered during ictal and interictal periods and
employ an entropy measure (approximate entropy, or ApEn, a
measure of the entropy of patterns in physiological data, see [22]),
to monitor how the entropy of the interactions between different
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ECoG sites changes over the course of seizure activity. As emulated
interactions become less predictable (i.e., when ApEn of the ENE's
phase-domain information increases), we can identify periods of
time where the ENE is more likely to produce HFOs and produce
voltage discharges. By comparing how the emulator's behavior is
related to changes in recorded ECoG voltages we can identify how
coordinated interactions between ECoG electrodes are related to
ictal activity.

2. Methods

Phase locked loop trajectories: A PLL contains a voltage-
controlled oscillator (VCO), a low-pass filter, and a phase detec-
tor (Fig. 1). It detects the phase-difference between a periodic
input signal and the VCO, and adjusts the VCO to “lock” to the
phase of its input.

If the input frequency and the internal frequency are different,
or if the output of the PLL is perturbed (such as by the weights of
PLL neural network), then there exists no steady-state solution
[11,19], and the PLL cannot synchronously lock to the input.
Instead there will be a class of solutions, and the PLL will find a
low-energy limit cycle trajectory that orbits within this class. This
limit-cycle trajectory is characterized by either (1) synchronizing
with the harmonics of the different frequencies, (2) periodic syn-
chronization to each frequency (such that the network is syn-
chronized “on average”), or (3) chaotic behavior [15].

Because PLLs use voltages as inputs, they can map directly onto
EEG (electroencephalography), ECoG, and LFP (local field potential)
recordings. We map the raw, measured voltages one-to-one from
an ECoG electrode to a PLL in our network. The network then
attempts to synchronize with oscillatory phase or frequency
information implicit in the changing ECoG voltages. The PLL net-
work thus models network dynamics across electrode sites by
locking to phase-frequency interactions present between
electrodes.

Epilepsy data: We used canine epilepsy data [6] made public as
part of the American Epilepsy Society Seizure Prediction Chal-
lenge. (https://www.ieeg.org/). This data consisted of intercranial
EEG data from four dogs with naturally occurring epilepsy col-
lected via a chronic implantable monitoring system over several

months. EEG was sampled from 16 electrodes at 400 Hz, refer-
enced to group average, and binned into 1 s samples labeled
“interictal” or “ictal.” In all cases, we use the raw voltages from
these samples as inputs to our emulator and characterize the
phase-trajectories of the PLLs in response to the different classes
of data.

PLL epilepsy network emulator: We used a PLL neural network to
emulate the cortical dynamics that contribute to eplieptiform
activity in the canine model. Our network consisted of 16 PLLs, one
for each recording electrode, connected via a symmetric weight
matrix with uniform weights of 0.5 (Fig. 1). Each PLL's VCO had an
internal frequency of 1 Hz. All used a third-order type 2 Chebyshev
low pass-filter with τ¼ 0.4 Hz, and a window size of 0.25 s. All
implementations used a multiplicative phase detector. The dyna-
mical system embodied by this network is characterized by

_ϑi ¼ΩþV ðϑiÞ
Xn

j ¼ 1

sijVðϑj�π=2Þ; ð1Þ

where ϑi is the phase of the ith PLL, Ω is the free-running fre-
quency of the VCO, and V(x) and V ðx�π=2Þ are sin ðxÞ and cos ðxÞ
respectively.

Each PLL in this network was locked to voltages from one
electrode in a single dog's chronic recording array. We observed
the model's phase trajectories over a period of 8π (4 s). This net-
work was fully implemented in python using the SciPy package
(Jones, Oliphant, Peterson et al. 2001-, Open Source Scientific Tools
for Python) and the PyEEG package [3] with data visualizations
using PyQtGraph. In all cases, the two variables of interest are PLL
phase (ϑ), and ECoG voltage (V). We plot these over time, and
characterize the complexity of these trajectories using a measure
of entropy.

Approximate entropy: Approximate entropy (ApEn) is a measure
of the unpredictability of the fluctuations within a set of time-
series data that was developed for computing the amount of
information present in finite samples of physiological data [21].
ApEn has previously been used as a metric for predicting seizure
activity from EEG and ECoG data [28,14]. ApEn is a measure of the
likelihood that similar patterns in time-series data will be followed
by dissimilar patterns. A low ApEn means that patterns in a time-
series are likely to be repeated, a high ApEn means that patterns

Fig. 1. Diagram of the PLL neural network emulator.
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