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a b s t r a c t

The existing algorithms for theminimumconcave cost network flowproblemsmainly focus on the single-
source problems. To handle both the single-source and the multiple-source problem in the same way,
especially the problems with dense arcs, a deterministic annealing algorithm is proposed in this paper.
The algorithm is derived froman application of the Lagrange andHopfield-type barrier function. It consists
of two major steps: one is to find a feasible descent direction by updating Lagrange multipliers with a
globally convergent iterative procedure, which forms the major contribution of this paper, and the other
is to generate a point in the feasible descent direction, which always automatically satisfies lower and
upper bound constraints on variables provided that the step size is a number between zero and one.
The algorithm is applicable to both the single-source and the multiple-source capacitated problem and is
especially effective and efficient for the problems with dense arcs. Numerical results on 48 test problems
show that the algorithm is effective and efficient.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The minimum concave cost network flow problem can be
described as follows.

Let G = (N, A) be a directed graph, where N = {1, 2, . . . , n}
is the set of n nodes of G and A is the set of arcs of G satisfying
that (i, j) ∈ A if and only if there is a directed arc from node
i to node j. For any (i, j) ∈ A, let xij denote the flow from
node i to node j, and assume that there is a maximum capacity
cij > 0 on arc (i, j). Let x = (xij : (i, j) ∈ A)T and f (x)
denote the cost of the flow through the network. We assume that
f is a continuously differentiable concave function. The minimum
concave cost network flow problem is given as follows. Find a
solution of

min f (x)
subject to

−
(i,j)∈A

xij −
−

(j,k)∈A

xjk = bj, j = 1, 2, . . . , n,

0 ≤ xij ≤ cij, (i, j) ∈ A,

(1)
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where xij can be an integer variable or a continuous variable
and bj represents demand or supply of node j and satisfies
that

∑n
j=1 bj = 0. It is an NP-hard problem and has many

applications including production planning, transportation and
communication network design, and facility locations. Owing
to the concavity of the objective function, an optimal solution
occurs at a vertex of the polytope of the feasible region and
local optimality does not imply global optimality, which means
that classical approaches of nonlinear programming usually can
only find a local minimum point. In order to solve the minimum
concave cost network flow problem, a number of algorithms have
been developed in the literature, which are referred to Fontes
and Goncalves (2007), Fontes, Hadjiconstantinou, and Christofides
(2006a, 2006b, 2003), Kim and Hooker (2002), Minoux (1986),
Ortega and Welsey (2003), Pardalos and Rosen (1987), Trudeau
(2009), etc. An excellent survey of algorithms for the minimum
concave cost network flow problem can be found in Guisewite
(1995) and the references therein. Most of these algorithms focus
on the single-source uncapacitated problems or the problems
for which the network is sparse, i.e., each node is connected to
only a few nodes, say k nodes with k ≪ n (e.g., Fontes and
Goncalves (2007), Fontes et al. (2003)). To solve the multiple-
source and capacitated problems by the existing algorithms, one
has to transform theproblems into the single-source uncapacitated
ones. However, this transformation process will introduce many
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new nodes and arcs, which significantly increases the number of
variables.

Generally speaking, if a minimum concave cost network flow
problem has more nodes and arcs, the problem will be more
difficult and time-consuming to solve. Also, for a fixed number of
nodes n, when each node is only connected to a few nodes (say
k nodes with k ≪ n), that is, the network is sparse, the search
for an optimal solution is much easier. With the increasing of k,
the number of possible network flows increases exponentially,
and the problem becomes more and more difficult to solve. Thus,
for the problems with large k (we call the network is dense), the
running time for the existing algorithmswill dramatically increase.
Especially, when k = n−1 (the largest value of k), that is, each pair
of nodes is connected by two opposite directed arcs, the problems
in this case become much more difficult. These challenges appeal
for more effective and efficient alternatives.

Neural Networks, since their emergence, have experienced
significant advances in both theory and applications, especially
in optimization, among which combinatorial optimization, due
to Hopfield and Tank (1985), has become a popular topic in the
literature of neural computation. Although initial results were
disappointing, modified network dynamics and better problem
mapping contribute significantly to solution quality (Gee, Aiyer, &
Prager, 1993). Xu (1994) proposed a Lagrange and transformation
method for combinatorial optimization neural net. Peterson and
Soderberg (1989) mapped the graph partition problem onto
a neural network with the graded neuron encoding, which
can reduce the solution space by one dimension. Gee et al.
(1993) presented a problem mapping evaluation method without
recourse to purely experimental means. Gee and Prager (1994)
proposed a rigorous mapping for quadratic 0–1 programming
problems with linear equality and inequality constraints. After
transforming variables with exponential functions, Urahama
(1996) presented an analog solver for nonlinear programming
problems with linear constraints. A feasible solution construction
mechanism was introduced in Horio, Ikeguchi, and Aihara (2005)
to improve the performance of the Hopfield-type chaotic neuro-
computer system for quadratic assignment problems (QAPs). Bout
and Miller (1990) and Wu (2004) applied the mean field
annealing (MFA) algorithm for a solution of the graph bisection
problem. Feig and Kuauthgamer (2006) and Ishii, Iwata, and
Nagamochi (2007) proposed other algorithms for graph bisection
problem. Waugh and Westervelt (1993) introduced a neural
network architecture that is applicable in optimization. Wang and
Xia (1998) designed a primal–dual neural network for assignment
problems. Xia (2004, 2009) proposed projection neural networks
for constrained optimization and variational inequalities. Xia and
Feng (2007) designed a neural network for solving nonlinear
projection equations. By combining deterministic annealing, self-
amplification, algebraic transformations, clocked objectives, and
softassign, an optimizing network architecture was constructed
in Rangarajan, Gold, and Mjolsness (1996). Furthermore, special
network models were constructed for the traveling salesman
problem (Aiyer, Niranjan, & Fallside, 1990; Dang & Xu, 2001;
Durbin & Willshaw, 1987; Wacholder, Han, & Mann, 1989; Wolfe,
Parry, & MacMillan, 1994). Statistical mechanics as the underlying
theory of optimization neural networks was studied in Simic
(1990). A systematic investigation of such neural computational
models for combinatorial optimization can be found in Berg (1996)
and Cichocki andUnbehaunen (1993).Most of these algorithms are
of deterministic annealing type, which is a heuristic continuation
method that attempts to find the global minimum of the effective
energy at a high temperature and track it as the temperature
decreases. There is no guarantee that the minimum at a high
temperature can always be tracked to the minimum at a low
temperature, but the experimental results are encouraging (Yuille
& Kosowsky, 1994).

In this paper, we adopt the idea of deterministic annealing to
propose an algorithm for approximating a solution of theminimum
concave cost network flowproblem. Themain idea of the algorithm
is as follows. A Hopfield-type barrier function is used to deal with
lower and upper bound constraints on variables, where the barrier
parameter behaves as temperature in an annealing procedure and
decreases to zero from a sufficiently large positive number which
ensures that the barrier function is convex. Lagrange multipliers
are introduced to handle linear equality constraints. The algorithm
attempts to produce a high-quality solution by generating a
minimum point of a barrier problem for a sequence of descending
values of the barrier parameter. For any given value of the barrier
parameter, in order to search for a minimum point of the barrier
problem, the algorithm performs two major steps: one is to find
a feasible descent direction by updating the Lagrange multipliers
with a globally convergent iterative procedure, which forms the
major contribution of this paper, and the other is to generate a
point in the feasible descent direction, which has a nice feature
that the lower and upper bounds on variables are always satisfied
automatically provided that the step size is a number between zero
and one. For any given positive value of the barrier parameter, we
prove that the algorithm converges to a stationary point of the
barrier problem. The algorithm solves both the single-source and
the multiple-source capacitated problems in the same way and is
especially effective and efficient for the dense network problems.
Numerical results show that the algorithm is effective and efficient.

The rest of this paper is organized as follows. We introduce the
barrier problem and derive several important theoretical results
in Section 2. We describe the algorithm and show its convergence
to a stationary point of the barrier problem for any given positive
value of the barrier parameter in Section 3. We prove in Section 4
the global convergence of the iterative procedure for updating
Lagrange multipliers to find a feasible descent direction. We
present some numerical results in Section 5 to show that the
algorithm is effective and efficient. Finally, we conclude the paper
with some remarks in Section 6.

2. A Hopfield-type barrier function

We assume without loss of generality that 0 < bj +∑
(j,k)∈A cjk, j = 1, 2, . . . , n, and that the problem has a strictly

feasible flow. In order to solve (1), we introduce for each (i, j) ∈ A
a Hopfield-type barrier term,

hij(xij) = xij ln xij + (cij − xij) ln(cij − xij),

to incorporate 0 ≤ xij ≤ cij into the objective function, and obtain

min e(x, β) = f (x) + β
−

(i,j)∈A

hij(xij)

subject to
−

(i,j)∈A

xij −
−

(j,k)∈A

xjk = bj, j = 1, 2, . . . , n, (2)

where β is a barrier parameter. Instead of solving (1) directly, we
consider a scheme that obtains a solution of (1) from a solution of
(2) at the limit of β ↓ 0.

Let h(x) =
∑

(i,j)∈A hij(xij). Then, e(x, β) = f (x) + βh(x). Let

P =

x


−

(i,j)∈A

xij −
−

(j,k)∈A

xjk = bj, j = 1, 2, . . . , n,

0 ≤ xij ≤ cij, (i, j) ∈ A


and

B = {x | 0 ≤ xij ≤ cij, (i, j) ∈ A}.
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