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a b s t r a c t

LAGO is an efficient kernel algorithmdesigned specifically for the rare target detection problem.However,
unlike other kernel algorithms, LAGO cannot be easily usedwithmany domain-specific kernels.We solve
this problem by first providing a unified framework for LAGO and clarifying its basic principle, and then
applying that principle on the unit sphere instead of in the Euclidean space.
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1. Introduction

We study the rare target detection problem, that is, a two-class
classification problem in which the class of interest (C1) is very
rare; most observations belong to a majority, background class
(C0). Given a set of unlabelled observations, the goal is to rank those
belonging to C1 ahead of the rest. Refer to Bolton and Hand (2002)
for various interesting applications.
Clearly, one can use any classifier to do this as long as the

classifier is capable of producing an estimated posterior probability
P(y ∈ C1|x) or a classification score, e.g., the support vector
machine (SVM, e.g., Cristianini and Shawe-Taylor (2000)). Since
its emergence, the SVM has spawned a wave of new research in
kernel-basedmethods. If radial-basis kernel functions are used, the
final decision function constructed by the SVM (using quadratic
programming) can be written as

f (x) =
∑
i∈SV

αiyiφ(x; xi, rI)+ β0, (1)

where φ(x; xi, rI) is a radial-basis kernel function centered at xi
with radius r , and SV denotes the set of ‘‘support vectors’’. For
ranking purposes, the constant term β0 can be dropped.
First developed in the statistics research community, LAGO (Zhu,

Su, & Chipman, 2006) is an extremely efficient kernel method de-
signed specifically for the rare target detection problem. It con-
structs a decision function much like Eq. (1) but does not use any
iterative optimization procedure to do so. The main purposes of
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this short article are: (i) to introduce LAGO to the broader com-
putational intelligence research community, and (ii) to resolve an
existing difficulty faced by LAGO, which prevents LAGO from being
used with many interesting domain-specific kernel functions.

2. LAGO

The decision function constructed by LAGO for ranking
unlabelled observations can be written as (Zhu, 2008; Section 4.2)

f (x) =
∑
xi∈C1

|Ri|φ(x; xi, αRi), Ri = riI, (2)

where ri is the average distance between the kernel center, xi ∈ C1,
and its K -nearest neighbors from C0, i.e.,

ri =
1
K

∑
w∈N0(xi,K)

d(xi,w). (3)

The notation ‘‘N0(xi, K)’’ denotes the K -nearest neighbors of xi
from C0; and d(u, v) is a distance function, e.g., d(u, v) = ‖u− v‖.
The parameters α and K are global tuning parameters.
Hence, (2) has exactly the same form as (1), but it is constructed

in an efficient manner that fully exploits the special nature of
the rare class detection problem. Instead of using an iterative
optimization procedure to identify support vectors and calculate
the coefficients, αi(i = 1, 2, . . . , n), LAGO simply uses all training
observations from the rare class, C1, as its ‘‘support vectors’’ and
sets the coefficient in front of each kernel function to be |Ri|,
the volume of the kernel. The only calculation required is the
computation of ri – Eq. (3) – for every xi ∈ C1. This is extremely
efficient since the size of C1 is typically very small for rare target
problems.
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Zhu et al. (2006) gave a few theoretical arguments for why
all these shortcuts are justified. Suppose p1(x) and p0(x) are
density functions of C1 and C0. The main argument is that (2)
can be viewed as a kernel density estimate of p1 adjusted locally
by a factor that is approximately inversely proportional to p0,
i.e. |Ri|. The resulting ranking function f (x) is thus approximately
a monotonic transformation of the posterior probability that item
x belongs to the rare class. Intuitively, the ‘‘LAGO principle’’ can
be summarized as follows: To evaluate a new observation x, each
training observation xi ∈ C1 will cast a vote, and its vote will be
weighted according to how close xi is to nearby observations from
C0 or, equivalently, according to the local density of C0 nearby.

3. Difficulty

An important advantage of kernel methods such as the SVM lies
in theirmodularity: to solve a different problem, just use a different
kernel function, and the underlying learning algorithm can stay
the same (Shawe-Taylor & Cristianini, 2004). A wide variety of
kernel functions are available for solving various domain-specific
problems (e.g., Cristianini, Shawe-Taylor, and Lodhi (2001), Leslie,
Eskin, Cohen, Weston, and Noble (2004) and Shawe-Taylor and
Cristianini (2004)). Many of these domain-specific kernels, such
as the latent-semantic kernel (Cristianini et al., 2001) and the
mismatch string kernel (Leslie et al., 2004), are defined explicitly as
inner products in the feature space. That is, explicit feature vectors
are first defined using domain-specific knowledge, and a simple
inner-product kernel, φ(u; v) = uTv, is used.
Strange as it may sound, one cannot simply use an inner-

product kernel in LAGO. With inner-product kernels, one can no
longer interpret (2) as a locally adjusted kernel density estimate
of p1. More importantly, the volume of the kernel |Ri|, a very
important ingredient of LAGO, is missing for the inner-product
kernel. In other words, it is not clear how to compute ri – Eq. (3)
– and construct the decision function (2).

4. Solution

In this section, we propose a solution to the aforementioned
difficulty and make LAGO applicable to a much wider variety of
practical problems. The gist of our solution is to apply the ‘‘LAGO
principle’’ on the unit sphere, instead of in the Euclidean space. This
particular solution is based upon three critical insights:
(I1) Most kernel functions used in kernel density estimation (Sil-

verman, 1986) have a common structure. Suppose x ∈ Rq,
then these kernel functions can often be written as

φ(x; xi, riI) =
Cq

|riI|
φc

(
d(x, xi)
ri

)
, (4)

where C is the normalizing constant such that C
∫
φc(z)dz =

1. There are two key ingredients, a (positive) basic kernel
function φc(·), and a distance metric d(·, ·). For example, the
radial-basis kernel has this structure. Simply take

d(x, xi) = ‖x− xi‖ (5)

to be the Euclidean distance and

φc(z) = e−z
2/2
. (6)

The normalizing constant is C = 1/
√
2π .

(I2) Using the kernel function (4), the ‘‘LAGO principle’’ is
extremely easy to describe. First, pick a distance metric d(·, ·).
Using the chosen distance metric, define ri according to (3).
Multiply each kernel by |riI|. Finally, add all the pieces together
according to (2). Notice that the ‘‘LAGO principle’’ does not
depend on the distance metric d(·, ·) or the basic kernel
function φc(·).

Fig. 1. A unified framework for LAGO. One is free to choose the distance metric
d(x, xi) and the basic kernel function φc(·); the fundamental ‘‘LAGO principle’’
is independent of these choices. The three possible choices given explicitly in
the figure, ‘‘Gaussian’’, ‘‘Triangular’’ and ‘‘Cosine’’, are not exhaustive; many other
choices are possible.

(I3) If u, v are unit vectors, we can decompose any inner product
and write it as

uTv = cos
(
arccos(uTv)

)
. (7)

Then, we can view arccos(uTv) as a distance metric – it
measures the angular distance between two points lying on
the unit sphere, and cos(·) as the basic kernel function φc(·)
– if we truncate the cosine function to zero beyond ±π/2 to
ensure that it is positive.

Based on (I1)–(I3), our solution is as follows: Given explicit
feature vectors x, xi ∈ Rq, first remove the overall mean and
normalize all the feature vectors to lie on the unit sphere, i.e.,
‖x‖ = ‖xi‖ = 1, and then apply the ‘‘LAGO principle’’ using the
angular distance metric,

d(x, xi) = θ(x, xi) = arccos(xTi x), (8)

and the truncated cosine kernel function,

φc(z) = cos(z)I
(
|z| <

π

2

)
. (9)

Hence, the ‘‘LAGO principle’’ stays exactly the same as before;
the only change lies in the type of geometry. Rather than Euclidean
geometry, we now work with unit-sphere geometry instead. So
we measure distances differently (using angular distances rather
than Euclidean distances), and use a different kernel function (the
truncated cosine kernel rather than other kernels). Fig. 1 presents
a unified framework for LAGO, and shows how various kernels fit
into the general form of (4).
Putting (2)–(4) and (8)–(9) together, we obtain the decision

function:

f (x) =
∑
xi∈C1

cos
(
arccos(xTi x)

αri

)
I
(∣∣∣∣arccos(xTi x)αri

∣∣∣∣ < π

2

)
, (10)

where

ri =
1
K

∑
w∈N0(xi,K)

arccos(xTiw). (11)

Again, α and K are global tuning parameters. Our empirical
experiences suggest that LAGO is not very sensitive to K andmuch
more sensitive to α. In practice, it often suffices to fix K = 5,
leaving us with just one tuning parameter, α.
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