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The neurophysiology of eye movements has been studied extensively, and several computational models
have been proposed for decision-making processes that underlie the generation of eye movements
towards a visual stimulus in a situation of uncertainty. One class of models, known as linear rise-
to-threshold models, provides an economical, yet broadly applicable, explanation for the observed
variability in the latency between the onset of a peripheral visual target and the saccade towards it. So
far, however, these models do not account for the dynamics of learning across a sequence of stimuli, and
they do not apply to situations in which subjects are exposed to events with conditional probabilities.
In this methodological paper, we extend the class of linear rise-to-threshold models to address these
limitations. Specifically, we reformulate previous models in terms of a generative, hierarchical model, by
combining two separate sub-models that account for the interplay between learning of target locations
across trials and the decision-making process within trials. We derive a maximum-likelihood scheme for
parameter estimation as well as model comparison on the basis of log likelihood ratios. The utility of the
integrated model is demonstrated by applying it to empirical saccade data acquired from three healthy
subjects. Model comparison is used (i) to show that eye movements do not only reflect marginal but also
conditional probabilities of target locations, and (ii) to reveal subject-specific learning profiles over trials.
These individual learning profiles are sufficiently distinct that test samples can be successfully mapped
onto the correct subject by a naive Bayes classifier. Altogether, our approach extends the class of linear
rise-to-threshold models of saccadic decision making, overcomes some of their previous limitations, and
enables statistical inference both about learning of target locations across trials and the decision-making
process within trials.
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1. Introduction

In order to survive in a competitive, dynamic environment, an-
imals must be able to integrate past experience with sensory ev-
idence to infer the current state of the world and execute a be-
havioural response. Marked progress in our understanding of the
neural basis of decision making has been achieved by focusing on
sensory-driven decisions, such as the simple question of where to

* This research has been funded by the Wellcome Trust (VS/06/UCL/A18), the
German Academic Exchange Service (DAAD, D/06,/49008), and the Stiftung Familie
Klee (Frankfurt/Main).

* Corresponding author at: Wellcome Trust Centre for Neuroimaging, Institute of
Neurology, University College London, 12 Queen Square, London WC1IN 3BG, UK.

E-mail address: kay.brodersen@gmx.net (K.H. Brodersen).

0893-6080/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2008.08.007

look next. Studying decision making in sensorimotor systems like
the oculomotor system has the advantage that one can exploit a
large body of neuroanatomical and neurophysiological knowledge
that has been accumulated over the past decades. It seems conceiv-
able that studying the neuronal mechanisms of visual-saccadic de-
cision making could provide us with a blueprint of how the brain
implements other sensorimotor decisions, or even deliver “a model
for understanding decision making in general” (Glimcher, 2003).
The decision processes that underlie rapid eye movements
towards a target have been studied in a variety of experimental
paradigms. One seminal series of studies is based on the random
dot-motion task designed by Newsome and colleagues (Newsome
& Pare, 1988). In an initial fixed-duration version of this task,
monkeys were trained to discriminate the motion direction
of a set of moving dots with varying degrees of coherence,
and indicate the perceived motion by a leftward or rightward
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saccade (Newsome, 1997; Newsome, Britten, & Movshon, 1989;
Newsome, Britten, Salzman, & Movshon, 1990; Salzman, Britten,
& Newsome, 1990). Subsequently, Shadlen, Britten, Newsome,
and Movshon (1996) suggested a computational explanation of
the neuronal mechanisms producing the resulting saccade and
provided experimental verification of its key assumptions (Gold &
Shadlen, 2000; Kim & Shadlen, 1999; Shadlen et al., 1996; Shadlen
& Newsome, 2001). In particular, they identified a gradual rise of
spiking activity in the lateral intraparietal (LIP) area integrating
motion direction-specific signals from the middle temporal (MT)
area (Shadlen & Newsome, 1996, 2001).

Based on a reaction time version of the same task (Roitman &
Shadlen, 2002), Shadlen and colleagues advanced the hypothesis
that rising activity before a saccade, which had also been
observed in the frontal eye fields (FEF), represented the ratio
of the log likelihoods that the two possible eye movements
would be executed (Gold & Shadlen, 2000, 2001). Based on their
decision-theoretic analysis, they suggested that log likelihood
ratios might be used as “a natural currency for trading off sensory
information, prior probability and expected value to form a
perceptual decision” (Gold & Shadlen, 2001).

Another key series of studies was carried out by Hanes, Schall,
and colleagues, who investigated an oddball task (as well as the
countermanding paradigm; Hanes and Carpenter (1999)) to study
how neural signals in the FEFs would finally trigger the initiation
of saccades (Hanes & Schall, 1996; Hanes, Thompson, & Schall,
1995; Schall & Thompson, 1999; Thompson, Bichot, & Schall, 1997;
Thompson, Hanes, Bichot, & Schall, 1996). In their oddball task,
monkeys were trained to indicate, by an eye movement, the
location of the oddball within a circular arrangement of visual
stimuli around a central fixation dot. They showed that FEF activity
was consistent with psychophysical models about oddball reaction
time tasks (Luce, 1986; Ratcliff, 1978; Sternberg, 1969a, 1969b).
Specifically, their findings supported the notion that the saccadic
decision would be made as soon as gradually increasing neural
activity in the FEFs had crossed a biophysical threshold (Hanes,
Patterson, & Schall, 1998; Schall & Thompson, 1999).

Motivated by the question of why saccadic latencies displayed
large variance in all of the above tasks, an even simpler
reaction time paradigm was investigated by Carpenter and
colleagues (Carpenter & Williams, 1995; Reddi & Carpenter, 2000).
In their saccade-to-target reaction time task, human subjects were
asked to shift their gaze from a central fixation stimulus to an
eccentric target as soon as it appeared on the screen. The critical
manipulation was to vary the uncertainty about where the target
would appear (Basso & Wurtz, 1997, 1998). It was found that
saccade latencies became shorter with increasing prior probability
of the corresponding target location. Specifically, response speed
was found to be proportional to the log prior probability of target
location (Basso & Wurtz, 1997, 1998; Carpenter & Williams, 1995).

The behavioural and electrophysiological findings from all three
paradigms described above are consistent with the notion of a sac-
cade being elicited once some gradually rising neuronal activity
crosses a biophysical threshold. This idea has been formalized in
terms of various mechanisms known as rise-to-threshold accumu-
lator models. These models aim to provide a computational ab-
straction of a biophysically conceivable mechanism that explains
saccade latencies and their variability across trials (for reviews
see Glimcher (2001, 2003), Gold and Shadlen (2001), Platt (2002),
Ratcliff and Smith (2004), Schall (2001, 2003), Smith and Ratcliff
(2004) and Usher and McClelland (2001)).

In the context of saccadic decision making with a fixed set of
potential target locations, rise-to-threshold models assume that
subjects maintain a set of hypotheses each of which corresponds

to one such location (Carpenter & Williams, 1995; Gold & Shadlen,
2002; McMillen & Holmes, 2006; Shadlen & Gold, 2004). As
the stimulus appears, a measure of evidence for each of these
hypotheses is continuously refined, implemented as a competition
between alternative decision signals in the brain. At any given
point in post-stimulus time, these decision signals might, for
example, represent the posterior probabilities of the target
hypotheses, as derived from the subject’s prior (Basso & Wurtz,
1997, 1998; Platt & Glimcher, 1999) and the sensory evidence
(i.e., the likelihood of the data) collected up to that point in
time (Carpenter, 2004; Carpenter & Williams, 1995). As soon as
one such signal reaches a preset threshold, a saccade is elicited
towards the corresponding target. Depending on the way in which
information is assumed to be accumulated over time, two specific
types of rise-to-threshold model are often distinguished: random-
walk models and linear rise-to-threshold models.

Random-walk or diffusion models are fundamentally based
on a sequential probability ratio test that is being carried out
continually (Ratcliff, 1978; Ratcliff & Rouder, 1998; Ratcliff &
Smith, 2004; Ratcliff, Zandt, & McKoon, 1999; Wald, 1945). In
these models, each new incoming piece of sensory evidence
either increases or decreases a single decision variable until
it has drifted beyond a threshold associated with the saccadic
movement towards a particular target. The decision variable
represents the relative evidence for the two alternatives (Ratcliff
& Rouder, 1998). However, in the case of a simple saccade-to-
target task in a high-contrast setting with highly salient targets,
it has been questioned whether a random-walk process for target
detection provides a sufficient explanation for the large variability
in latencies (Carpenter, 2004; Carpenter & Reddi, 2001; Reddi,
2001).

In linear rise-to-threshold models, randomness is introduced
as trial-by-trial changes in the otherwise constant rate of rise of
the decision signal. This notion has been formalized by Carpenter
in a model termed ‘LATER’ (linear approach to threshold with
ergodic rate; Carpenter and Williams (1995), Leach and Carpenter
(2001), Reddi, Asrress, and Carpenter (2003)). Like other rise-
to-threshold models, LATER proposes that a saccade towards
a target is elicited as soon as a neural decision signal has
reached a particular threshold. But unlike other rise-to-threshold
models (e.g., Grice (1968) and Nazir and Jacobs (1991)), it assumes
a fixed threshold and a linear increase whose rate is subject to
variation across trials, yet fixed within a given trial (for a debate on
the relationship between the two approaches see Carpenter and
Reddi (2001), Ratcliff (2001), Usher and McClelland (2001)). The
neurophysiological recordings by Schall and colleagues (Hanes &
Schall, 1996; Schall & Thompson, 1999) are consistent with these
key assumptions of the LATER model: they had observed that the
threshold for saccade release seemed to be constant, whereas the
slope of the rise in activity varied considerably across trials (see
Fig. 2a).

In their experiments on the saccade-to-target task, Carpen-
ter and colleagues found that the observed saccadic latency was
a function of the log probability of the corresponding target lo-
cation: the more likely the target location, the shorter the la-
tency (Carpenter & Williams, 1995). LATER accounts for this rela-
tionship by assuming that the learned a priori target probabilities
determine the baseline levels of the decision signals, but not their
rates of rise (cf. biased choice theory by Luce (1963)). Carpenter and
colleagues used LATER to produce remarkably accurate predictions
of human latency distributions in the saccade-to-target task as
well as variations of it (Asrress & Carpenter, 2001; Carpenter &
Williams, 1995; Leach & Carpenter, 2001; Reddi et al., 2003; Reddi
& Carpenter, 2000).
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