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a b s t r a c t

We present and study a probabilistic neural automaton in which the fraction of simultaneously–updated
neurons is a parameter, ρ ∈ (0, 1). For small ρ, there is relaxation towards one of the attractors and a
great sensibility to external stimuli and, for ρ ≥ ρc , itinerancy among attractors. Tuning ρ in this regime,
oscillations may abruptly change from regular to chaotic and vice versa, which allows one to control
the efficiency of the searching process. We argue on the similarity of the model behavior with recent
observations, and on the possible role of chaos in neurobiology.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Attractor neural networks (ANN) are a paradigm for the
property of associative memory (Hopfield, 1982; Amit, 1989).
Nevertheless, concerning practical applications, and also when
trying to mold the essence of actual systems, the utility of ANN
is severely limited, mainly by the fact that they can only retrieve
one memory at a time. In this note, we show that such a limitation
may be systematically overcome by simply generalizing familiar
model situations. More specifically, we here extend some of
our recent work on ANN with fast pre–synaptic noise (Cortes,
Torres, Marro, Garrido, & Kappen, 2006; Marro, Torres, & Cortes,
2007; Torres, Cortes, Marro, & Kappen, 2007). The result is a
novel mathematically–tractable ANN whose activity eventually
describes heteroclinic paths among the attractors. This illustrates,
in particular, the possibility of a constructive role of chaos during
searching processes.
Our previous related studies essentially considered the same

model system, but focussed on two different ways of updating
it, namely, (i) sequential and (ii) parallel updating. Interesting
enough, the ensuing behavior was qualitatively, even dramatically
different. That is, the main observation was, respectively, (i) a
great enhancement of the system sensibility to external stimuli
as a consequence of rapid synaptic fluctuations which simulate
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facilitation and/or depression (Cortes et al., 2006; Torres et al.,
2007), and (ii) chaotic behavior while the system spontaneously
visited all the available attractors (Marro et al., 2007). Each
of these two regimes of behavior is to be associated with a
different functionality of an essential dynamic instability. Such
an important dependence on the updating process is rather
unexpected. For instance, we checked that it does not occur in
a recent model (Pantic, Torres, Kappen, & Gielen, 2002; Pantic,
Torres, & Kappen, 2003) which is based on a different depression
mechanism. This situation motivated us to study in detail the
changeover between (i) and (ii) as a modification of our previously
proposed ANN (Cortes et al., 2006; Marro et al., 2007). That is, we
here present neural automata in which the number or density ρ
of neurons that are updated at each time step is a parameter. The
resulting behavior as one modifies ρ is varied and intriguing. It
leads us to argue on the possible relevance of our observations to
interpret neurobiological experiments.

2. Definition of model

Let the sets of neuron activities σ ≡ {σi} and synaptic weights
w ≡

{
wij ∈ R

}
, where i, j = 1, . . . ,N , and assume a presynaptic

current hi (σ,w) on each neuron due to the weighted action of the
others. At each time unit, one updates the activity of n neurons,
1 6 n 6 N . This induces evolution in discrete time, t , of the state
probability distribution according to

Pt+1(σ) =
∑
σ
′

R
(
σ ′→σ

)
Pt(σ ′), (1)
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where the transition rate is a superposition:

R
(
σ→σ ′

)
=

∑
x
pn(x)

∏
{i|xi=1}

ϕ̃n
(
σi → σ ′i

) ∏
{i|xi=0}

δσi,σ ′i
. (2)

Here, ϕ̃n
(
σi → σ ′i

)
≡ ϕ

(
σi → σ ′i

) [
1+

(
δσ ′i ,−σi

− 1
)
δn,1

]
and

we denote x ≡ {xi = 0, 1} an extra set of indexes which helps one
in selecting the desired subset of neurons. The above thus describes
parallel updating, as in familiar cellular automata (Chopard &
Droz, 1998), for n = N or, macroscopically, ρ ≡ n/N →
1, while updating proceeds sequentially, as in kinetic Ising-like
models (Marro & Dickman, 1999), for n = 1 or ρ → 0.
We shall consider explicitly the simplest version of this

model which happens to be both interesting and mathematically
tractable. First, we assume binary neurons, so that σi = ±1,
which is known to be sufficient in order to capture the essentials of
cooperative processes (Abbott & Kepler, 1990; Marro & Dickman,
1999; Pantic et al., 2002). The elementary rate ϕ is an arbitrary
function of βσihi (with β an inverse ‘‘temperature’’ or stochasticity
parameter) which we assume to satisfy detailed balance. This
property is not fulfilled by the superposition (2) for n > 1,
however. Consequently, the resulting steady states are generally
out of equilibrium, which is more realistic in practice than
thermodynamic equilibrium (Marro & Dickman, 1999). On the
other hand, we shall only illustrate the case in which the n neurons
are chosen at randomout from the set ofN , so that one has pn (x) =(
N
n

)−1
δ
(∑

i xi − n
)
in (2). For the sake of simplicity, we also need

to assume that the currents are such that hi (σ,w) = h
[
π (σ) , ξi

]
,

where ξi ≡
{
ξ
µ

i = ±1;µ = 1, . . . ,M
}
are some given, stored

patterns (realizations of the set of activities) and π ≡ {πµ (σ)}.
Here, πµ (σ) = N−1

∑
i ξ
µ

i σi measures the overlap between the
current state and pattern µ. For N → ∞ and finite M , i.e., in the
limit α ≡ M/N → 0 (which is not the interesting case, but may
serve first for illustrative purposes) the resulting time equation
under these conditions is πµt+1 (σ) = ρN−1

∑
i ξ
µ

i tanh
(
hti
)
+

(1− ρ) πµt (σ) ,where hti ≡ βhi
[
πt (σ) , ξi

]
, for any µ. The above

result is general and valid for any type of patterns. It is to be noticed
that the sum over i in this map can be replaced by an average over
the distribution of patterns p(ξµi ). This permits a simple derivation
of mean-field dynamical equations for the overlaps, at least for
finite M . Note also that Monte Carlo simulations do not require
restriction concerning the nature of the stored patterns.
The above allows for different relations between the currents

hi and the weights wij, and between these and other system
properties. The simplest realization corresponds to the Hopfield
case (Hopfield, 1982) which follows from the map above for
ρ → 0 and currents given by hi (σ,w) =

∑
j6=iwijσj with

the weights fixed according to the Hebb prescription, namely,
wij = N−1

∑
µ ξ

µ

i ξ
µ

j . The symmetry wij = wji then assures
Pt→∞ (σ) ∝ exp

(
β
∑
i hiσi

)
and, for high enough β , the stored

patterns ξ are attractors of dynamics (Amit, 1989). We checked
that, in agreement with some indications (Herz & Marcus, 1993),
the Hopfield–Hebb network exhibits associative memory for any
ρ > 0. However, the situation is more complex, e.g., it depends
on ρ, as one goes beyond Hopfield–Hebb, as we show in the next
section.
It is well documented that transmission of information and

computations in the brain are correlated with activity–induced
fast fluctuations of synapses, i.e., ourwij’s (Abbott & Regehr, 2004;
Dobrunz & Stevens, 1997; Ferster, 1996). More specifically, it
has been observed that there is some efficacy lost after heavy
work, so that synapses suffer from depression; it is claimed that
repeated activation decreases the neurotransmitter release which
depresses the synaptic response (Abbott, Varela, Sen, & Nelson,

1997; Cook, Schwindt, Grande, & Spain, 2003; Tsodyks, Pawelzik, &
Markram, 1998; Thomson & Deuchars, 1994; Thomson, Bannister,
Mercer, & Morris, 2002). The consequences of this have already
been analyzed in various contexts (Bibitchkov, Herrmann, &Geisel,
2002; Cook et al., 2003; Cortes et al., 2006; Marro et al., 2007;
Pantic et al., 2002; Torres et al., 2007), and a main general
conclusion from these studies is that depression importantly
affects a network performance reducing, in particular, the stability
of the attractors. Motivated by these facts, we shall adopt here the
Hopfield currents and the following prescription for the synaptic
weights:

wij = [1− (1− Φ) q (π)]N−1
∑

µ
ξ
µ

i ξ
µ

j , (3)

where q (π) ≡ 1
1+α

∑
µ π

µ (σ)2. Note here that, in addition of
static quenched disorder as in the standard Hopfield model, the
weights (3) include a time dependence through the overlap vector
πwhich is a measure of the network firing activity. These weights,
which reduce to the Hebb prescription for Φ = 1, amount to
assume short–term fluctuationswhich change synapses by a factor
Φ on the average with a probability q (π). Therefore, any positive
Φ < 1 simulates synaptic depression if q (π) is large. This is in
agreement with the fact that, the greater π is, more activity will on
average arrive to a particular postsynaptic neuron i in the network,
and therefore, this neuron will be more depressed. Although the
magnitude q (π) involves a sum over all stored patterns, this will
only affect neurons that are active in a particular pattern for not too
high correlated patterns. More details concerning these assertions
are in Cortes et al. (2006) and Marro et al. (2007).
Our setting here is rather close to the one in previous treatments

of depressing synapses in a cooperative environment. As a matter
of fact, one may show after some simple algebra that the model
in Pantic et al. (2002, 2003) and Torres, Pantic, and Kappen (2002)
corresponds to certain choices of Φ and q (π) in (3) concerning
steady states. For instance, a possible choice forM = 1 and ρ = 1
isΦ = 1− γ /γ0 and

q(π) =
γ0[γ (1− π2)+ 4]
γ 2(1− π2)+ 4γ + 4

(4)

where γ is the depression parameter defined in Torres et al. (2002)
and γ0 is the value for that parameter at which Φ = 0. This type
of nonlinearity in q (π), however, induces less sensitivity than the
choice we are using here (see next section).
For the sake of completeness, we shall be concerned in this

paper with both positive and negative values of Φ. A result is that
the behavior we are looking for ensues in any of these cases (but
only for certain values ofΦ).

3. Some main results

In the limite N → ∞ the (nonequilibrium) stationary state
follows from the map for M = 1 as π∞ = F (π∞; ρ,Φ),
and local stability requires that |∂F/∂π | < 1; F (π; ρ,Φ) ≡
ρ tanh

{
βπ

[
1− (1− Φ) π2

]}
+ (1− ρ) π . The fixed point is

therefore independent ofρ, but stability demands thatρ < ρc with

ρc = 2
{
3βπ2

∞

[(
4
3
− Φ

)
− (1− Φ) π2

∞

]
− β + 1

}−1
(5)

(a condition that cannot be fulfilled in the Hopfield, Φ = 1 case).
As Fig. 1 shows, ρ = ρc marks the period-doubling route to chaos
in the saddle–point map. This behavior is confirmed numerically
forM � 1 stored arbitrary patterns, as shown numerically below.
Fig. 2 shows some typical stationaryMonte Carlo runs, i.e., from

bottom to top: (a) convergence towards one attractor – in fact,
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