
Neural Networks 21 (2008) 1311–1317

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

A systematic investigation of a neural network for function approximation
Leila Ait Gougam, Mouloud Tribeche ∗, Fawzia Mekideche-Chafa
Theoretical Physics Laboratory, Faculty of Sciences-Physics, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, 16111, Algiers, Algeria

a r t i c l e i n f o

Article history:
Received 5 July 2007
Revised and accepted 19 June 2008

Keywords:
Function approximation
Neural network
Wavelet
Gradient decent
Activation function
Response function
Formal neuron
Scale parameters merging
Kolmogorov theorem

a b s t r a c t

A model which takes advantage of wavelet-like functions in the functional form of a neural network is
used for function approximation. The scale parameters are mainly used, neglecting the usual translation
parameters in the function expansion. Two training operations are then investigated. The first one
consists of optimizing the output synapticweights and the second one on optimizing the scale parameters
hidden inside the elementary tasks. Building upon previously published results, it is found that if (p+ 1)
scale parameters merge during the learning process, derivatives of order p will emerge spontaneously
in the functional basis. It is also found that for those tasks which induce such mergings, the function
approximation can be improved and the training time reduced by directly implementing the elementary
tasks and their derivatives in the functional basis. Attention has been also devoted to the role transfer
functions, number of iterations, and formal neurons number may play during and after the learning
process. The results complement previously published results on this problem.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

For several years now, neural network models have enjoyed
wide popularity, being applied to problems of regression, classi-
fication, computational science, computer vision, data processing
and time series analysis (Haykin, 1994; Hopfield & Tank, 1986;
Lippmann, 1987). They have been also successfully used for the
identification and the control of dynamical systems, mapping the
input–output representation of an unknown system and, possibly,
its control law (Narendra & Parthasaranthy, 1990). The problem of
determining the analytical description for a set of data arises in nu-
merous sciences and applications and can be referred to as data
modeling or system identification. Neural networks are a conve-
nient means of representation because they are known to be uni-
versal approximators (Hornik, Stinchcombe, & White, 1989) that
can learn data. The desired task is usually obtained by a learning
procedure which consists in adjusting the ‘‘synaptic weights’’. For
this purpose, many learning algorithms have been proposed to up-
date these weights. The convergence for these learning algorithms
is a crucial criterion for neural networks to be useful in different
applications (Arik, 2005; Liang & Cao, 2004). In fact, considerable
effort has gone into developing techniques for accelerating the
convergence of the training algorithms. In addition, there is a grow-
ing understanding that the choice of transfer functions is at least
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as important as the network architecture and learning algorithm.
Sigmoids (Cybenko, 1988; Hornik et al., 1989) have been the first
proposed transfer functions. It has been proved by many authors
that they can approximate an arbitrary continuous function on a
compact domain with arbitrary precision given sufficient number
of neurons. Despite the fact that sigmoids are the most commonly
used functions, there is no a priori reason why they should be op-
timal in all cases. For this purpose, several transfer functions have
been proposed and we just mention Gaussian (Hartman, Keeler, &
Kowalski, 1990), Lorentzian (Giraud, Lapedes, Liu, & Lemm, 1995),
plane wave (Giraud, Liu, Bernard, & Axelrad, 1991), and rational
fraction ones (Leung & Haykin, 1993).
During the last two decades, function approximation based

on wavelets (Benveniste & Zhang, 1992; Oussar & Dreyfus, 2000;
Zhang, Walter, Miao, & Lee, 1995) has attracted a great deal of
interest as a very good alternative to more classical techniques.
In fact, wavelets became a necessary mathematical tool in many
investigations. Analysis and processing of different classes of
nonstationary or inhomogeneous signals is the main field of
applications of wavelet analysis. Because of their unique proper-
ties, wavelets were used in functional analysis in mathematics, in
studies of multi-fractal properties, singularities and local oscilla-
tions of functions, for solving some differential equations, for in-
vestigation of inhomogeneous processes involving widely differ-
ent scales of interacting perturbations, for pattern recognition, for
image and sound compression (Erlebacher, Hussaini, & Jameson,
1996; Mallat, 1998). The most general principle of the wavelet
construction is to use dilations and translations. Commonly used
wavelets form a complete orthonormal system of functions with
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a finite support constructed in such a way. That is why by chang-
ing a scale (dilations) they can distinct the local characteristics of
a signal at various scales, and by translations they cover the whole
region in which it is studied. It has been proven that any function
can bewritten as a superposition of admissible wavelets, and there
exists a numerically stable algorithm to compute the coefficients
for such an expansion. Moreover, these coefficients completely
characterize the function, and it is possible to reconstruct it in a
numerically stable way by knowing these coefficients. Wavelets
constitute a class of functions that satisfy a set of important
mathematical properties. Consider, without loss of generality, that
these functions are limited, have a compact support and that their
translations and dilations generate a basis of functions for the
representation of any element within a family of square integrable
functions. It was proved that these families of functions are uni-
versal approximators (Daubechies, 1992). Therefore, wavelet net-
works can be considered as an alternative to neural and radial basis
function networks.
Recently, Giraud and Touzeau (2001), used a well-known

simplified architecture to show that the latter provides a
reasonably efficient, practical and robust, multifrequency analysis.
The training algorithm, optimizing the task with respect to the
widths of the responses, revealed two distinct training modes. The
first one induced some of the formal neurons to become identical,
and the other one kept them distinct. In Giraud and Touzeau
(2001), the suggestion has been made that the first training mode
may represent new neural units, which are the derivatives of the
elementary task with respect to their scale parameters. The aim
of this paper is therefore to explore this suggestion, within the
theoretical framework of Giraud and Touzeau (2001) to which the
reader is referred. It is also legitimate to wonder about the role
transfer function and the dimension of the elementary task basis
may play on the approximation of a given target task.
In the present paper, we use wavelets stemming from the

continuous wavelet transform. This approach uses a set of formal
neurons (wavelets)with various translation parameters b and scale
ones λ, hence a space of elementary responses translated by b and
scaled with λ. The function to be approximated is then expanded
in this set. The integral form of the expansion is then reduced to
a discrete sum where the development coefficients are the output
synaptic weights and are the unknowns of the problem.
The manuscript is organized as follows. In the next section, the

model and the architecture of the neural network are succinctly
outlined. Two training operations are then presented, optimizing
both the output synaptic weights and the scale parameters.
A numerical implementation is carried out and discussed in
Section 3. A summary of our results and findings is given in
Section 4.

2. Network architecture and training

Before proceeding further, it is well to give an outline of the
model and the architecture of the neural network that emanates
directly from the Kolmogorov’s seminal results (Kolmogorov,
1956, 1957). The emphasis is on Kolmogorov’s second theorem,
which subsequently has been reformulated by Kurkova (1992)
in more practical ways for artificial neural networks applications
with somewhat relaxed requirements on approximating functions
employed. The Kolmogorov’s theorem states that any function
continuous on the n-dimensional unit cube En, E = [0, 1] can be
represented in the form

f (x1, x2, . . . , xn) =
2n+1∑
j=1

Ψj

(
n∑
i=1

φij (xi)

)
(1)

where Ψj and φij are real continuous functions of one variable, and
the functionsφij are independent of the given function f while only

the functions Ψj are specific for the given function. Later, Heht-
Nielsen (1987) pointed out a resemblance between the formal
structure of Kolmogorov’s expansion of continuous functions
through other auxiliary functions with three layer feed-forward
neural networks and reformulated the Kolmogorov’s theorem as
any continuous function defined on the n-dimensional cube En, E =
[0, 1] can be implemented exactly by a three-layered network having
2n+ 1 units in the hidden layer with transfer functions of a sigmoidal
type from the input to the hidden layer.
In other words, a network with one hidden layer should be able

to describe any continuous function using (2n+ 1) nodes with n
being the number of inputs. Of course, these theoretical minima
may in practice be achieved only at the expense of a large number
of hidden units.
Going parallel to what has been stated above, let us consider

a three-layered network consisting of an input X , a hidden layer
of elementary responses and a linear output neuron. The neural
elementary units receive the same input X . Each unit returns
an output f which depends on two parameters: the translation
parameter b and the scale one λ. Output synaptic weights ω (b, λ)
linearly regroup these elementary outputs into a global output
F(X). We have then the expansion (Mallat, 1989)

F (X) =
∫
ω (b, λ) f

(
X − b
λ

)
dbdλ. (2)

We first consider the case when the translation parameter is
neglected and discuss later the case when it is included. Hence,
discretizing Eq. (2) with N units and neglecting the translation
parameter, we obtain the following approximation function

Fapp (X) =
N∑
i=1

ω (λi) f
(
X
λi

)
. (3)

To define the ‘‘best’’ Fapp, one has to minimize the square norm
of the error F − Fapp, first in terms of the output weights ωi and
second of the scale parameters λi. In terms of theωi’s, this consists
in solving the equation

∂

∂ωi

(〈
F − Fapp | F − Fapp

〉)
= 0. (4)

Using Eq. (3) and adopting short notation, we obtain

∂

∂ωi

(
〈F | F〉 − 2

N∑
j=1

ωj
〈
fj | F

〉
+

N∑
j,k=1

ωj
〈
fj | fk

〉
ωk

)
= 0

i = 1, . . . ,N. (5)

the solution of which is given by

ωi =

N∑
j=1

(
g−1

)
ij

〈
fj | F

〉
, i = 1, . . . ,N (6)

where g is the matrix with elements

gjk =
〈
fj | fk

〉
. (7)

Let now minimize the mean square norm of the error (MSE) ε =〈
F − Fapp | F − Fapp

〉
in terms of scale parameters λi. Note that we

need only the derivatives of fi with respect to their scales λi. We
have thus

∂ε

∂λj
=
2ωj
λ2j

〈
Xf ′
(
X
λj

)
| F − Fapp

〉
= 0, j = 1, . . . ,N (8)

where f ′ represents the derivative of the elementary task, before
any scaling. For the latter (also refereed to as the transfer function)
several choices are possible. In the following numerical analysis,
three transfer functions will be tested, viz., a sigmoidal function, a
Gaussian one, and two wavelets.
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