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a b s t r a c t

Although there are many neural network (NN) algorithms for prediction and for control, and although
methods for optimal estimation (including filtering and prediction) and for optimal control in linear
systems were provided by Kalman in 1960 (with nonlinear extensions since then), there has been, to
my knowledge, no NN algorithm that learns either Kalman prediction or Kalman control (apart from the
special case of stationary control). Here we show how optimal Kalman prediction and control (KPC), as
well as system identification, can be learned and executed by a recurrent neural network composed of
linear-response nodes, using as input only a stream of noisy measurement data.
The requirements of KPC appear to impose significant constraints on the allowed NN circuitry and

signal flows. The NN architecture implied by these constraints bears certain resemblances to the local-
circuit architecture ofmammalian cerebral cortex.We discuss these resemblances, aswell as caveats that
limit our current ability to draw inferences for biological function. It has been suggested that the local
cortical circuit (LCC) architecture may perform core functions (as yet unknown) that underlie sensory,
motor, and other cortical processing. It is reasonable to conjecture that such functions may include
prediction, the estimation or inference of missing or noisy sensory data, and the goal-driven generation
of control signals. The resemblances found between the KPC NN architecture and that of the LCC are
consistent with this conjecture.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The Kalman optimal filter and controller (Kalman, 1960) are
classical solutions for efficient optimal estimation (which includes
prediction, filtering, and smoothing) and optimal control in linear
systems. They also form the basis for extensions that yield
approximately optimal solutions for certain types of nonlinear
systems. Within the field of neural networks, a great many
algorithms for prediction and control in a variety of settings
have been developed. Yet there exists, to my knowledge, no
neural algorithm for learning the optimal Kalman filter (KF), nor
for learning the optimal Kalman controller (KC) except in the
stationary case (discussed in Section 5.2). In addition, the classical
Kalman algorithms assume that the parameters characterizing the
external system (the ‘plant’) and the measurement process are
known in advance. When they are not known, a separate process
of system identification is typically performed.
In this paper we derive a neural network (NN) circuit and

algorithm that learns and executes Kalman estimation and
control, and that also determines the required combinations
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of plant and measurement process parameters, using as input
only a stream of noisy measurement data vectors (and, for the
controller, the specification of the cost function whose value
is to be optimized). The differences between the Kalman filter
and controller learned by the network, and those derived using
the classical Kalman algorithms, can be made arbitrarily small,
provided that certain expectation values over distributions are
sufficiently well approximated by the corresponding finite-sample
statistics1 (as discussed in Sections 3 and 4).
The resulting artificial neural circuit and algorithm may prove

useful for implementing the learning and execution of Kalman
prediction and control, and its nonlinear extensions, in parallel
systems consisting of simple processors.
The resulting circuit architecture also has distinctive features

that invite comparison with aspects of biological neural networks,
particularly in cerebral cortex, and may help in exploring the
possible functions of such networks.
The paper is organized as follows. Section 2 summarizes

the optimal linear estimation and control problems, and the
classical Kalman filter and controller algorithms. In Section 3 we
derive a neural network algorithm that both solves the system
identification problem – i.e. learns the dynamical properties of

1We use ‘sample’ in its statistical sense, to mean a subset of a population
(ensemble) that is defined by a distribution.
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the plant (as these properties are reflected in the measurement
data) – and learns the optimal Kalman filter with arbitrary
accuracy. The derivation proceeds in several stages. We first
transform the classical Kalman estimation equations into a form
that explicitly involves only the input measurement vectors, and
not the plant state vectors themselves. (We do this because
the plant state is unknowable from the data in principle, even
apart from noise, when, as we assume, the transformation from
plant state to measurement vector is not specified to the NN.)
We then derive a learning procedure that exactly implements
these transformed equations, but that is expressed in terms of
certain expectation values. Next, we derive a neural network
algorithm that implements this learning procedure with arbitrary
accuracy (depending upon how well the expectation values are
approximated by sample statistics). Some distinctive elements of
this algorithm include: (a) the use of local neural networkmethods
to perform the required learning or use of the inverse of an error
covariance matrix; (b) the generation of this covariance matrix by
using either an ensemble ofmeasurement vectors at each time step
(e.g., the positions of a set of tracked features in a visual scene),
a single vector tracked over time to generate such an ensemble,
or a combination of the two; (c) the simultaneous learning of the
Kalman filter, use of that filter to predict the future plant state,
and refinement of the learning of the plant dynamical parameters;
and (d) a specific recurrent circuit architecture, and sequencing
of computations, that are implied by the algorithm. Finally, the
joint NN learning of the plant dynamics and the Kalman filter is
illustrated with a numerical example.
In Section 4, we derive a neural algorithm for Kalman control.

The several stages of the derivation are similar to those used
for Kalman estimation. There are evident similarities that result
from the mathematical duality (Kalman, 1960) between Kalman’s
optimal estimation and optimal control solutions, but there is an
additional distinctive feature: Kalman’s duality includes a time
reversal operation, so that the Kalman control matrix is computed
by a process that operates ‘backward in time’, from the future
time of target (goal) acquisition to the present. We show how this
requirement is implemented within the neural algorithm, which
handles a decrementing time index during the learning process,
and generates a sequence of controller outputs to the plant in
physical (forward-moving) time. We then integrate the control
method into the same neural circuit and algorithm that handles
estimation and system identification.
In Section 5 we discuss several issues. First, we identify ways

in which the computational task – Kalman prediction and control
– places constraints on the type of NN circuitry and signal flows
that are involved in performing that task. Second, we comment on
applications to artificial NN designs, and discuss prior work that
has used NNs in conjunction with Kalman methods.
Finally, in Section 5.3 and the speculative Section 5.4, we

identify certain resemblances between the artificial NN that we
are led to by the Kalman prediction and control (KPC) constraints,
and the architecture (and proposed signal flows) of the putative
‘local cortical circuit’ (LCC, minicolumn, canonical microcircuit)
of mammalian cerebral cortex. The resemblances between the
KPC NN and the LCC, and important caveats that apply to the
interpretation of these resemblances, are discussed.
Section 6 summarizes and concludes the paper.

2. Classical Kalman linear estimation and control

In classical linear estimation and control (Kalman, 1960) an
external system (the ‘plant’) is described by a state vector xt (e.g., a
point’s trajectory) at each discrete time t , and the dynamical rule

xt+1 = Fxt + But +mt , (1)

where mt is plant noise (e.g., random buffeting of an object)
having zero mean and covariance Q , and the optional vector ut
is an external driving term and/or a computed control term. Each
measurement vector yt satisfies
yt = Hxt + nt , (2)
where nt is measurement noise having zero mean and covariance
R. The matrices F , B, H , Q , and R, and the vector ut , are
assumed known. (Continuous-time versions of these problems and
their Kalman solutions have been formulated, but we will limit
ourselves to the discrete-time case for simplicity.)

2.1. Classical Kalman estimation (filtering and prediction)

Given measurements through time t , the goal of optimal fil-
tering (or, respectively, one-step-ahead prediction) is to compute
a posterior state estimate x̂t (resp., a prior state estimate x̂−t+1)
that minimizes the generalized mean-square estimation error2
E[(ξt)′Cξt ] (resp., E[(ξ−t+1)

′Cξ−t+1]) where ξt ≡ xt − x̂t , ξ−t+1 ≡
xt+1−x̂−t+1, and C is a symmetric positive-definitematrix. Through-
out this paper, a variable having a ‘hat’ will generally denote an es-
timate of the underlying variable, and a variable having a tilde will
denote the result of applying a transformation to the underlying
variable.
Kalman (1960) showed that, under a variety of conditions, the

optimal estimation solution for both filtering and prediction is
given by what we will refer to as the ‘execution’ equations

x̂t = x̂−t + Kt(yt − Hx̂
−

t ); x̂−t+1 = F x̂t + But; (3)
and the ‘learning’ equations

Kt = P−t H
′(HP−t H

′
+ R)−1; P−t+1 = F(I − KtH)P

−

t F
′
+ Q . (4)

(These solutions are independent of C .) Eq. (4) are initialized by
assuming some distribution of values for ξ−0 and setting P

−

0 ≡

E[ξ−0 (ξ
−

0 )
′
]. It then follows (Kalman, 1960) that, for all t , P−t =

E[ξ−t (ξ
−

t )
′
]. Thus the KF matrix, Kt , is learned iteratively using

Eqs. (4), starting with an arbitrary matrix and converging expo-
nentially rapidly to its final value as each newmeasurement is ob-
tained. The classical KF learning algorithm involvesmultiplications
of one matrix by another, and matrix inversion.
The model prediction x̂−t and the current measurement yt are

optimally blended (to minimize the estimation error) by using the
KF (Eq. (3)). As expected intuitively, when the plant noise is much
greater than the measurement noise, this blending gives greater
weight to the currentmeasurement; when themeasurement noise
is much greater, the model prediction receives greater weight.

2.2. Classical Kalman control

The classical control problem known as ‘linear quadratic
regulation’ can be defined as follows. A controller is required to
generate a set of signals {ut} thatminimizes the expected total cost
J of approaching a desired target state at time N . Here J reflects the
cost of producing each control output (e.g., the energetic cost of
moving a limb or firing a rocket thruster) plus a penalty that is a
function of the difference between the actual state at each time
step and the target state. Specifically,

J = E

[
N−1∑
t=t0

(u′tgut + x
′

t rxt)+ x
′

N rxN

]
, (5)

where g and r are specified symmetric positive-definite matrices.
(We take the target state to be x = 0 for simplicity.)

2 Notation: E[. . .] denotes expectation value, prime denotes transpose, and I is
the identity matrix.
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