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Learning to play Go using recursive neural networks
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Abstract

Go is an ancient board game that poses unique opportunities and challenges for artificial intelligence. Currently, there are no computer Go
programs that can play at the level of a good human player. However, the emergence of large repositories of games is opening the door for new
machine learning approaches to address this challenge. Here we develop a machine learning approach to Go, and related board games, focusing
primarily on the problem of learning a good evaluation function in a scalable way. Scalability is essential at multiple levels, from the library of local
tactical patterns, to the integration of patterns across the board, to the size of the board itself. The system we propose is capable of automatically
learning the propensity of local patterns from a library of games. Propensity and other local tactical information are fed into recursive neural
networks, derived from a probabilistic Bayesian network architecture. The recursive neural networks in turn integrate local information across
the board in all four cardinal directions and produce local outputs that represent local territory ownership probabilities. The aggregation of these
probabilities provides an effective strategic evaluation function that is an estimate of the expected area at the end, or at various other stages, of
the game. Local area targets for training can be derived from datasets of games played by human players. In this approach, while requiring a
learning time proportional to N 4, skills learned on a board of size N 2 can easily be transferred to boards of other sizes. A system trained using
only 9× 9 amateur game data performs surprisingly well on a test set derived from 19× 19 professional game data. Possible directions for further
improvements are briefly discussed.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Go is an ancient board game – over 3000 years old (Cobb,
2002; Iwamoto, 1972) – that poses unique opportunities and
challenges for artificial intelligence and machine learning. The
rules of Go are deceptively simple: two opponents alternately
place black and white stones on the empty intersections of
an odd-sized square board, traditionally of size 19 × 19.
The goal of the game, in simple terms, is for each player
to capture as much territory as possible across the board by
encircling the opponent’s stones. This disarming simplicity of
the rules of Go, however, conceals a formidable combinatorial
complexity (Berlekamp & Wolfe, 1994). On a 19 × 19 board,
there are approximately 319×19

= 10172.24 possible board
configurations and, on average, on the order of 200–300
possible moves at each step of the game, preventing any
form of semi-exhaustive search. For comparison purposes, the
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game of chess has a much smaller branching factor, on the
order of 35–40 (Plaat, Schaeffer, Pijls, & de Bruin, 1996;
Russell & Norvig, 2002). Today, computer chess programs,
built essentially on search techniques and running on a simple
desktop, can rival or even surpass the best human players. In
contrast, and in spite of several decades of research efforts
and progress in hardware speed, the best Go programs of
today are easily defeated by an average human amateur player
(Bouzy & Cazenave, 2001; Chen, 1990; Enzenberger, 1996,
2003; Fotland, 1993; Graepel, Goutrie, Kruger, & Herbrich,
2001).

Besides the intrinsic challenge of the game, and the non-
trivial market created by over 100 million players worldwide,
Go raises other important questions for our understanding
of natural or artificial intelligence in the distilled setting
created by the simple rules of the game, uncluttered by
the endless complexities of the “real world”. For instance,
are there any “intelligent” solutions to Go and if so what
would characterize them? Note that, to many observers, current
computer solutions to chess appear to be “brute force”, hence
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“unintelligent”. But is this perception correct, or an illusion—is
there something like true intelligence beyond “brute force” and
computational power? Where is Go situated in the apparent tug-
of-war between intelligence and sheer computational power?
To understand such questions, the methods used to develop
computer Go programs are as important as the performance of
the resulting players. This is particularly true in the context of
certain current efforts aimed at solving Go by pattern matching
within very large databases of Go games. How “intelligent” is
pattern matching?

A second set of issues has to do with whether our attempts
at solving Go ought to mimic how human experts play?
Notwithstanding the fact that we do not know how human
brains play Go, here the experience gained again with chess, as
well as many other problems, clearly shows that mimicking the
human brain is not necessary in order to develop good computer
Go programs. However, we may still find useful inspiration in
the way humans seem to play, for instance in trying to balance
tactical and strategic goals.

Finally, and in connection with human playing, we note that
humans in general do not learn to play Go directly on boards
of size 19 × 19, but rather start by learning on smaller board
sizes, typically 9× 9. How can we develop algorithms capable
of transferring knowledge from one board size to another?

The emergence of large datasets of Go game records, and
the ability to record even larger datasets through Web and
peer-to-peer technologies, opens the door for new pattern-
matching and statistical machine learning approaches to Go.
Here we take modest steps towards addressing these challenges
by developing a scalable machine learning approach to Go
capable of knowledge transfer across board sizes. Clearly
good evaluation functions and search algorithms are essential
ingredients of computer board-game systems (Abramson, 1990;
Beal, 1990; Raiko, 2004; Ryder, 1971; Schrufer, 1989). Here
we focus primarily on the problem of learning a good evaluation
function for Go in a scalable way. We do include simple
search algorithms in our system, as many other programs do,
but these algorithms are not the primary focus. By scalability
we imply that a main goal is to develop a system more or
less automatically, using machine learning approaches, with
minimal human intervention and handcrafting. The system
ought to be able to transfer information across board sizes, for
instance from 9× 9 to 19× 19.

We take inspiration in three ingredients that seem to be
essential to the Go human evaluation process: the understanding
of local patterns (Chen, 1992), the ability to combine patterns,
and the ability to relate tactical and strategic goals. Our system
is built to learn these three capabilities automatically and
attempts to combine the strengths of existing systems while
avoiding some of their weaknesses. The system is capable
of automatically learning the propensity of local patterns
from a library of games. Propensity and other local tactical
information are fed into a set of recursive neural networks,
derived from a probabilistic Bayesian network architecture.
The networks in turn integrate local information across the
board and produce local outputs that represent local territory
ownership probabilities. The aggregation of these probabilities

provides an effective strategic evaluation function that is an
estimate of the expected area at the end (or at other stages) of
the game. Local area targets for training can be derived from
datasets of human games. The main results we present here are
derived on a 19 × 19 board using a player trained using only
9× 9 game data.

2. Data

Because the approach to be described emphasizes scalability
and learning, we are able to train our systems at a given
board size and use it to play at different sizes, both larger
and smaller. Pure bootstrap approaches to Go have been tried
where computer players are initialized randomly and play
large numbers of games, such as evolutionary approaches or
reinforcement learning (Sutton & Barto, 1998; Schrauldolph,
Dayan, & Sejnowski, 1994). We have implemented these
approaches and used them for small board sizes 5 × 5 and
7× 7, where no training data were available to us. However, in
our experience, these approaches do not scale up well to larger
board sizes. For larger board sizes, better results are obtained
using training data derived from records of games played by
humans. We have used available data for training and validation
at board sizes of 9×9, 13×13, and 19×19. The data are briefly
described below.

Data for 9×9 Boards: This dataset consists of 3495 games.
We randomly selected 3166 games (90.6%) for training, and the
remaining 328 games (9.4%) for validation. Most of the games
in this data set are played by amateurs. A subset of 424 games
(12.13%) have at least one player with an olf ranking of 29,
corresponding to a 3 kyu player.

Data for 13 × 13 Boards: This dataset consists of 4175
games. Most of the games, however, are played by rather weak
players and therefore cannot be used effectively for training.
For validation purposes, however, we retained a subset of 91
games where both players have an olf ranking greater than or
equal to 25—the equivalent of a 6 kyu player.

Data for 19× 19 Boards: This high-quality dataset consists
of 1835 games played by professional players (at least 1 dan).
A subset of 1131 games (61.6%) are played by 9 dan players
(the highest possible ranking). This is the dataset used in Stern,
Graepel, and MacKay (2005).

3. System architecture

3.1. Evaluation function, outputs, and targets

Because Go is a game about territory, it is sensible
to try to compute “expected territory” as the evaluation
function, and to decompose this expectation as a sum of
local probabilities. More specifically, let Ai j (t) denote the
ownership of intersection i j on the board at time t during
the game. At the end of a game (Benson, 1976; Chen &
Chen, 1999), each intersection can be black, white, or neutral.1

1 This is called “seki”. Seki is a stalling situation where two live groups share
liberties and neither group can fill these liberties without becoming a prisoner
of the opponent.
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