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a b s t r a c t

Speech enhancement is a fundamental problem, the goal of which is to estimate clean speech st , given
a noise-contaminated signal st + nt , where nt is white or colored noise. This task can be viewed as a
probabilistic inference problem which involves estimating the posterior distribution of hidden clean
speech, given a noisy observation. Kalman filter is a representative method but is restricted to Gaussian
distributions only. We consider the generalized auto-regressive (GAR) model in order to capture the
non-Gaussian characteristics of speech. Then we present a constrained sequential EM algorithm where
Rao-Blackwellized particle filters (RBPFs) are used in the E-step and model parameters are updated in a
sequential manner in the M-step under positivity constraints for noise variance parameters. Numerical
experiments confirm the high performance of our proposed method, compared to Kalman filter-based
methods, in the task of sequential speech enhancement.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Signals measured through microphones in real-world environ-
ments are always noisy data, thus, the enhancement of speech or
the elimination of noise, plays a critical role for successful subse-
quent speech processing. Speech enhancement aims at estimating
clean speech st , given a noise-contaminated signal yt = st + nt

where nt is white (temporally independent) or colored (tempo-
rally dependent) noise. Various methods have been developed for
speech enhancement. These include Wiener filter method (Lim &
Oppenheim, 1978), spectral subtraction method (Boll, 1979), hid-
den Markov model (HMM)-based method (Sameti, Sheikhzadeh,
Deng, & Brennan, 1998), signal subspace method (Ephraim & Trees,
1993), Kalman filter method (Paliwal & Basu, 1987), and H∞ filter-
based method (Shen & Deng, 1999). Most of these methods are it-
erative algorithms in nature.

Speech enhancement becomes more important than ever, as
speech quality plays a critical role in automatic speech recognition
systems. In embedded or mobile environments, sequential speech
enhancement is more desirable than batch methods, since it
requires less memory and lower computational complexity.
Kalman filter has been a useful tool in speech enhancement
(Paliwal & Basu, 1987) and was further extended, incorporating the
expectation maximization (EM) optimization (Gannot, Burshtein,
& Weinstein, 1998; Weinstein, Oppenheim, Feder, & Buck, 1994).
Kalman gradient descent sequential (KGDS) algorithm is an
exemplary sequential speech enhancement method (Gannot et al.,
1998). However, Kalman filter is restricted to the case where
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speech modeling is based on Gaussian distribution. In contrast,
particle filter can handle non-Gaussian distributions, because it is
a sequential importance sampling method, computing statistical
expectation with respect to rather complex distributions. Recently,
particle filter was also used for speech enhancement (Vermaak,
Andrieu, Doucet, & Godsill, 2002), where speech signal is modeled
by time-varying auto-regressive (AR) model, assuming that the
innovation sequence follows Gaussian distribution.

As in Gannot et al. (1998) and Vermaak et al. (2002), we
formulate the speech enhancement as a probabilistic inference
problem, employing a state space model. In this framework,
the task of sequential speech enhancement involves integrations
with respect to the posterior distribution over hidden variables
(states vector), given an incoming observation signal (see Eq. (12)).
In contrast to most existing methods, we use the generalized
auto-regressive (GAR) model for a speech generating process,
in order to capture the non-Gaussian characteristics of speech.
Noise is assumed to be a colored Gaussian random process, where
the conventional AR model is used with a Gaussian innovation
sequence. Exploiting the analytical structure of the state space
model, we employ the Rao-Blackwellization (Casella & Robert,
1996; Doucet, Godsill, & Andrieu, 2000b) where the posterior
distribution over hidden variables is decomposed as two parts, one
of which is analytically calculated by Kalman filter and the other
of which is estimated by particle filter. We use Rao-Blackwellized
particle filter (RBPF) for probabilistic inference which involves
the sequential calculation of the integration with respect to the
posterior distribution. Our earlier work is found in Park and Choi
(2006).

In this paper we present a constrained sequential EM algorithm
for speech enhancement, where the inference is carried out by
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RBPFs in the E-step and model parameters are updated in a
sequential manner under positivity constraints for noise variance
parameters in the M-step. This RBPF-based constrained sequential
EM is referred to as RBPF + csEM throughout this paper. The
contributions of the paper are summarized:

• We employ the GAR model where the innovation sequence
follows the generalized exponential distribution, which reflects
the non-Gaussian characteristics. In contrast to the AR model, in
such a case, the probabilistic inference becomes intractable. The
posterior distribution over hidden variables (both speech and
noise state variables) is computed by combining the particle
filter with the Kalman filter. That is, the probabilistic inference
is carried out by the RBPF.
• We propose a constrained sequential EM which estimates

model parameters recursively with positivity constraints for
some of parameters. It turns out that the constrained sequential
EM together with Kalman filter (which is referred to as
KF+ csEM) also outperforms KGDS.

The rest of this paper is organized as follows. The next section
describes a formulation of the probabilistic sequential speech
enhancement. A state space model is introduced, where clean
speech follows the generalized auto-regressive model and the
noise is based on the standard auto-regressive model. Section 3
explains the inference part in our probabilistic sequential speech
enhancement, while parameter estimation based on the proposed
constrained sequential EM is described in Section 4. Experimental
results and comparisons to Kalman filter-based methods, are given
in Section 5, emphasizing the high performance of the proposed
method. Finally, conclusions are drawn in Section 6.

2. Problem formulation

We first formulate the task of speech enhancement as a
probabilistic inference problem, presenting a state space model by
considering a GAR model for the speech generating process. Then
we outline the proposed constrained sequential EM algorithm
for speech enhancement, the details of which are illustrated in
subsequent sections.

2.1. GAR model

AR model is a widely-used linear modeling method, where the
current value of a time series, st , is expressed as a linear sum of its
past values, {st−τ}, and an innovation vt:

st =
p∑
τ=1
ατst−τ + vt. (1)

AR modeling involves determining coefficients {ατ} that provide a
linear optimal fitting (in mean squared error sense) to a given time
series {st}, assuming that the innovation vt is Gaussian. AR model
captures the dependence of the current value of a time series on
its past values, through a linear model. The innovation contains a
truly new information that is not found in past values of time series.
AR modeling has been widely used in speech processing (Lim &
Oppenheim, 1978).

GAR model is a non-Gaussian extension of the AR model, where
the same linear model (1) is used but the innovation vt is assumed
to be drawn from the generalized exponential distribution (a.k.a.
generalized Gaussian) with mean zero (Box & Tiao, 1992; Choi,
Cichocki, & Amari, 2000) that is of the form

p(v; R,β) =
Rβ1/R

20(1/R)
exp

{
−β |v|R

}
, (2)

where 0(·) is the gamma function, 1/β determines the width of the
density, and R is a parameter involving a shape of distribution.

Generalized exponential distribution accommodates a wide
class of unimodal probability distribution. For example, p(v; R,β)
becomes Gaussian distribution for R = 2 and Laplacian distribution
for R = 1. The value of R close to 1, well approximate the
distribution of the innovation sequence for real speech signal (see
Fig. 2(a)). In contrast to the AR model where the probabilistic
inference is carried out by the Kalman filter, the probabilistic
inference in the GAR model is intractable. This leads us to consider
the Rao-Blackwellized particle filter that is described in Section 3.

2.2. State space model

The noise-contaminated observed signal yt is modeled as a
linear sum of clean speech st and noise nt:

yt = st + nt, (3)

where the clean speech and noise follow GAR and AR models,
respectively, i.e.,

st =
p∑
τ=1
ατst−τ + vt, (4)

nt =

q∑
τ=1
γτnt−τ + ut, (5)

where vt obeys the generalized exponential distribution and ut is
drawn from Gaussian distribution, i.e.,

vt ∼ p(vt; R,β) =
Rβ1/R

20(1/R)
exp

{
−β |v|R

}
, (6)

ut ∼ N (ut; 0,σ2) =
1

√
2πσ2

exp
{
−

1
2σ2 u

2
t

}
. (7)

We assume that st and nt are statistically independent.
We define st ∈ Rp and nt ∈ Rq as

st = [st, st−1, . . . , st−p+1]
>, (8)

nt = [nt, nt−1, . . . , nt−q+1]
>. (9)

Concatenating these two vectors, we define a state vector xt =

[s>t ,n>t ]> ∈ Rp+q. Accommodating generative models (4) and (5)
for speech and noise, the state space model that we consider, is of
the form:

xt = Axt−1 + Brt, (10)

yt = b>xt, (11)

where

A =
[
As 0
0 An

]
∈ R(p+q)×(p+q),

B =
[
bs 0
0 bn

]
∈ R(p+q)×2,

rt = [vt, ut]
>
∈ R2,

b =
[
bs

bn

]
∈ Rp+q,

and

bs = [1, 0, . . . , 0]> ∈ Rp,

bn = [1, 0, . . . , 0]> ∈ Rq.

The state transition matrix A ∈ R(p+q)×(p+q) is a block diagonal
matrix where As ∈ Rp×p and An ∈ Rq×q are given by

As =



α1 α2 · · · · · · αp

1 0 · · · · · · 0

0 1
. . .

...
...

. . .
. . .

...
0 · · · 0 1 0


,
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