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h i g h l i g h t s

• Generalize the CORF operator for color images for contrast invariant edge detection.
• Unify center–surround differencing with Serre’s color image descriptor.
• Cropped Gaussian Pyramid as a piece-wise linear approximation for foveated vision.
• Shown competitive performance in visual salience at reduced computational costs.
• Enabling more complex image processing in real-time, ideal for FPGA implementation.
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a b s t r a c t

While remotely operated unmanned vehicles are increasingly a part of everyday life, truly autonomous
robots capable of independent operation in dynamic environments have yet to be realized — particularly
in the case of ground robots required to interactwith humans and their environment.Wepresent a unified
multiresolution vision model for this application designed to provide the wide field of view required to
maintain situational awareness and sufficient visual acuity to recognize elements of the environment
while permitting feasible implementations in real-time vision applications. The model features a kind of
color-constant processing through single-opponent color channels and contrast invariant oriented edge
detectionusing a novel implementation of the Combination of Receptive Fieldsmodel. Themodel provides
color and edge-based salience assessment, as well as a compressed color image representation suitable
for subsequent object identification. We show that bottom-up visual saliency computed using this model
is competitive with the current state-of-the-art while allowing computation in a compressed domain and
mimicking the human visual system with nearly half (45%) of computational effort focused within the
fovea. This method reduces storage requirement of the image pyramid to less than 5% of the full image,
and computation in this domain reduces model complexity in terms of both computational costs and
memory requirements accordingly. We also quantitatively evaluate the model for its application domain
by using it with a camera/lens systemwith a 185° field of view capturing 3.5M pixel color images by using
a tuned salience model to predict human fixations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Models of visual saliency, as a surrogate measure of attention
to indicate visually interesting image features, have been an active
field of research in both computational neuroscience as well as in
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computer vision; sometimes symbiotically feeding on the other’s
findings, and sometimesmoving ahead independently [1–5]. These
saliency models have used low-level features to build information
maps, which are then fused together to form what is popularly
called a saliency map. A compilation of how these models per-
formed, when compared against human fixations, shows that they
do remarkably well [6]. The Human Visual System (HVS) exhibits
multi-resolution characteristics, where the fovea is at the highest
resolution while the resolution tapers off towards the periphery.
In [7], the authors looked at adapting a model [4] to develop a bi-
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ologically inspiredmulti-resolution framework for salience, which
showedboth quantitative andqualitative advantages. However the
current approach offers a major advantage relative to [7], which is
that the processing of the visual input through a series of maps can
be precisely controlled. This top-down control permits paramet-
ric manipulation of the computation that can be modulated based
on the task at hand. The result is a computational algorithm that
is both tunable, and computationally efficient, thus making it ideal
for real-time, on-demand processing in an autonomous system.

The proposed algorithm is based on simple cells in the
primary visual cortex that are believed to extract local contour
information from a visual scene. This information serves as the
building block of early vision, and is important for such tasks as
determining salience, contour processing, object recognition, and
scene gist determination. The CORF (Combination of Receptive
Fields) model [8] considers a computational model of a simple cell
as an alternative to the 2D Gabor function (GF) model [9]. The
Scale Invariant Feature Transform (SIFT) is a well-known method
used for object recognition using a Difference of Gaussian (DoG)
approach to produce translation invariant feature vectors [10].
These models process visual input in a similar fashion as
the earliest stages of other models that describe hierarchical
processing of objects, such as HMAX [11], which simulates
the visual ventral pathway and HOP [12], which recognizes
complex objects by combining simpler parts into more complex
representations. In [13], the authors show that recognition rates
improve when incorporating attention in cluttered and crowded
conditions. In [14], the authors discuss various state-of-the-art
models with regards to a rapid visual categorization task and
postulate that attention is important in un-trained environments.

The model described here incorporates a novel formulation of
the CORF algorithm that is neuromorphic, tunable, and can support
both attention and object recognition.We describe how thismodel
may be used to determine high-salience regions of visual images as
a form of attention, which is important in object recognition and
scene understanding in humans.

2. Theory

2.1. Single opponent color difference of Gaussian model

We begin by describing a formulation for the computation of
Difference of Gaussian (DoG), defining center (Gc,σ ) and surround
(Gs,σ ) Gaussians conventionally and constraining the ratios of
inner and outer Gaussians to be 2 as found in electrophysical
studies in mammalian LGN cells [8]:

Gc,σ (x, y) def
=

1
2πσ 2

e−
x2+y2

2σ2 (1)

Gs,σ (x, y) def
=

1
2π (2σ)2

e
−

x2+y2

2(2σ)2 (2)

where σ is the standard deviation of the inner Gaussian. Let P ∈

R+, P ≤ Pmax and let the input image J : N2
→ P3. As

in [15] we consider opponent color channels Red–Green (R–G),
Red–Cyan (R–C), Yellow–Blue (Y–B), and White–Black (W–K), so
we must project from RGB color space into the higher-dimension
RGBCYW color space to compute these opponent color channels.
Let Ω (r, g, b) = ⟨r, g, b, 0.5g + 0.5b, 0.5g, +0.5r, 0.299r +

0.587g+0.11b⟩where r, g, b ∈ P. ThusΩ : P3
→ P6 anddescribes

how yellow, cyan and white (intensity) channels are derived from
an RGB pixel (note that this differs from [15]). Thus Ω (J) denotes
the image J in RGBCYW color space. We then convolve Ω (J) with
both center and surround Gaussians to yield center and surround
responses Gc,σ ∗ Ω (J) and Gs,σ ∗ Ω (J), respectively. Thus the
input image J may be thought of as a discrete function mapping

from pixel coordinate space (N2) to RGB, and G ∗ Ω (J) is a
function mapping pixel coordinate space to RGBCYW color space.
Mathematically, G ∗ Ω (J) : N2

→ P6.
Let [·] be the index operator that selects a color channel by name

(e.g. ⟨255, 0, 0, 0, 0, 0⟩ [R] = 255). The center-on or positiveDoG+

σ

may then be defined as:

DoG+

σ

def
=

|Gc,σ ∗ Ω(J)[R] − Gs,σ ∗ Ω(J)[G]|
+

|Gc,σ ∗ Ω(J)[R] − Gs,σ ∗ Ω(J)[C]|
+

|Gc,σ ∗ Ω(J)[Y ] − Gs,σ ∗ Ω(J)[B]|+

|Gc,σ ∗ Ω(J)[W ] − Gs,σ ∗ Ω(J)[W ]|
+


(3)

where |·|
+ designates half-wave rectification (|x|+ = x∀x ≥

0, 0 otherwise). This defines center-on DoG+

σ as a four-dimension
color space consisting of red channel center minus the green
channel surround, red center minus cyan surround, etc. Thus
the DoG+

σ function may be thought of as a 3D convolution that
transforms an image from RGB color space into a single-opponent
color space ⟨R–G, R–C, Y–B,W–K⟩.

Unlike previous work [8], DoG+

σ ≠ −DoG+

σ and is defined:

DoG−

σ

def
=

|Gc,σ ∗ Ω(J)[G] − Gs,σ ∗ Ω(J)[R]|+

|Gc,σ ∗ Ω(J)[C] − Gs,σ ∗ Ω(J)[R]|+

|Gc,σ ∗ Ω(J)[B] − Gs,σ ∗ Ω(J)[Y ]|
+

|Gs,σ ∗ Ω(J)[W ] − Gc,σ ∗ Ω(J)[W ]|
+


. (4)

Note that the definition of the white channel is conceptually the
same as that used in the CORF model [8]; therefore one may think
of this single-opponent color model as a generalization of CORF
and we call it CCORF (Color CORF). To illustrate what is generated
from this model, we present DoG responses for the test image as
illustrated in Fig. 1.

2.2. Cropped Gaussian pyramid

Fig. 2 illustrates the concept of transforming an image into a
‘Cropped Gaussian Pyramid’ (CGP) in which pyramid levels are
progressively cropped such that full resolution is preserved only
in a narrow field of view fovea, and there is a progressive loss
of acuity with increasing eccentricity due to increasingly sparse
representations in larger levels of the pyramid. This yields a multi-
resolution representation of the image in which the number of
pixels in the CGP is much less than the input image. Conversely,
traditional Gaussian Pyramids [16] (GPs) havemore pixels than the
image. For example, an imaging system producing 1920 × 1920
(3.51 Mpix) images can be represented in a 6-level CGP in only
166.78 Kpix, with 45% of those in the fovea,1 while a 6-level GP
model would require 4.91 Mpix.

Traditionally, GPs are constructed by successive (sequential)
Gaussian blur and downsampling operations. In the downsampling
step for imagery data, fully 3/4 of the computational work done in
blurring is discarded in current practice, but in a CGP an even larger
percent of computationalworkwill be discarded in the progressive
cropping. We therefore separate computations of the levels and
combine this with previously described (DoG) computation to
limit total computational work to only required computations
while enhancing parallelizability—significantly reducing the time
complexity of CGP pyramid construction at the tradeoff of
progressively reduced visual acuity in peripheral regions of the
image. Thus the CGP may be thought of as a piece-wise linear
approximation of biological foveated vision.

Each level of the pyramid is computed independently, directly
from the source image. The 3D convolution of the source image

1 In humans, ∼50% of cortical resources processing retinal information are
allocated to the fovea.
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