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h i g h l i g h t s

• An intuitive and user friendly system for transferring of skills from a person to a robot.
• It allows online learning and adaptation of motion trajectories.
• It allows adaptation of trajectories through human coaching, from either force or visual feedback.
• It is based on the dynamic motion primitives framework.
• Surface wiping use-case through non-rigid contact is demonstrated and evaluated.
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a b s t r a c t

In this paper we propose and evaluate a control system to (1) learn and (2) adapt robot motion for
continuous non-rigid contact with the environment. We present the approach in the context of wiping
surfaces with robots. Our approach is based on learning by demonstration. First an initial periodicmotion,
covering the essence of the wiping task, is transferred from a human to a robot. The system extracts and
learns one period of motion. Once the user/demonstrator is content with the motion, the robot seeks and
establishes contactwith a given surface,maintaining a predefined force of contact through force feedback.
The shape of the surface is encoded for the complete period ofmotion, but the robot can adapt to a different
surface, perturbations or obstacles. The novelty stems from the fact that the feedforward component
is learned and encoded in a dynamic movement primitive. By using the feedforward component, the
feedback component is greatly reduced if not completely canceled. Finally, if the user is not satisfied with
the periodic pattern, he/she can change parts of motion through predefined gestures or through physical
contact in a manner of a tutor or a coach.

The complete system thus allows not only a transfer ofmotion, but a transfer ofmotionwithmatching
correspondences, i.e. wiping motion is constrained to maintain physical contact with the surface to be
wiped. The interface for both learning and adaptation is simple and intuitive and allows for fast and
reliable knowledge transfer to the robot.

Simulated and real world results in the application domain of wiping a surface are presented on three
different robotic platforms. Results of the three robotic platforms, namely a 7 degree-of-freedom Kuka
LWR-4 robot, the ARMAR-IIIa humanoid platform and the Sarcos CB-i humanoid robot, depict different
methods of adaptation to the environment and coaching.
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1. Introduction

Learning by demonstration, as an approach of acquiring
trajectories in robotics [1], can only be effective if it enables
adaptation of the demonstrated policy to the current situation of
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the task or the environment [2]. For example, when learning a
wiping behavior,which is a rather trivial skill for humans, the robot
must acquire the correct characteristics of motion, but must also
maintain contact with the surface it is wiping. Such skill transfer
from a human to a robot, where not only the motion but also the
constraints imposed by the task are important, is the motivation
behind this paper. We propose a system that enables a robot to
learn actions which require continuous non-rigid contact with
the environment through human demonstrations and interactive
coaching. The coaching mechanisms enable a human teacher to
efficiently guide the robot towards a goal-directed execution.

Learning by demonstration often exploits the means of
encoding the motion characteristics of an action by generalizing
demonstrated trajectories from the performing subject and the
current situation. Different approaches exist, for example splines
and wavelets [3,4], which are effective for imitation learning, but
do not allow easy onlinemodulation. Another options are Gaussian
Mixture Regression [5] and Gaussian Mixture Models [6,7], used
to estimate the entire attractor landscape of a movement skill
from several demonstrations. To ensure stability of the dynamical
system towards an attractor point, a constraint optimization
problem in a nonconvex optimization landscape needs to be
solved. Yet another option is the use of HiddenMarkovModels [8].
Different dynamical systems can also be used.

Another type of dynamical systems are dynamic movement
primitives (DMPs) [9], which focus on the representation of single
movements by a set of differential equations. A DMP can represent
a control policy in a compact way and its attractor landscape
can be adapted by only changing a few parameters. Compared to
representations proposed in [6,7], only a simple system of linear
equations needs to be solved. DMPs can be used for representing
classes of movements using statistical learning techniques [2,10],
for combining trajectories in a dynamic way [11,12], and for
reinforcement learning [13–16]. In this paper we exploit the
DMP framework to enable continuous non-rigid contact with the
environment, based on force feedback.

Adaptation of learned trajectories to external feedback was
previously discussed in different settings and applications, using
different trajectory representations. The use of force feedback
to learn and improve task execution was widely considered in
robotics, see for example the book chapter by Villani and De
Schutter [17]. One of the best known approaches is the method
proposed by Hogan [18], where force feedback is used to change
the output velocity of a manipulator. This technology is the basis
for the DMP adaptation proposed in this paper.

DMPs themselves were already used for adaptation to forces.
In [19] the authors used an interaction force and the parallel
force/position control law to modulate the velocity of the
dynamical system. Pastor et al. [20,21] have also combined force
controllers and DMPs in an approach for modifying DMPs at the
acceleration level, allowing for reactive and compliant behaviors.
They used the demonstrated trajectory profiles as reference,
while [22] applied reinforcement learning to further optimize
the behavior. A modulation approach at the acceleration level
of a DMP for physically coupled dual-agent tasks was reported
by Kulvicius et al. [23], but the learning was applied to acquire
appropriate feedback gains instead of reference trajectories. On
the other hand, Gams et al. [24] utilized coupled DMPs with force
feedback at the velocity level. Combined with iterative learning
control, their approach can achieve the desired force interaction for
rigid contacts. Iteratively approaching a desired behavior has been
applied for in some programming by demonstration approaches.
For example, Sauser et al. [25] showed grasp adaptation through
human corrections, while Calinon and Billard [26] showed gesture
learning. On the other hand, iteratively approaching a desired
behavior was also shown in combination with DMPs in a peg-in-
hole task [27], where reference force-torque profiles were used as

means for autonomously improving the execution performance.
In this work the force controller was not applied within the
DMP framework. Haptic feedback for improving the teacher
demonstration was also used by Rozo et al. [28], who addressed
the problem of what to imitate based on the mutual information
between perceptions and actions. HMMs and GMR were used to
encode the demonstrations and for the robotic execution of the
learned tasks. Themethodwas augmented in order to be applicable
also for the task of pouring [29]. Adaptation of trajectories is not
limited to one-arm behaviors. An approach for bimanual operation
based on dynamical systems by adding local corrective terms was
discussed by Calinon et al. [30].

In this paper we consider the transfer of skills from a human
to a robot through coaching. The transfer is not limited to the
motion, but includes the execution of the task in contact with
the environment. We consider two problems of on-line motion
adaptation for the actual completion of the task. The first is the
adaptation to the external environment in order to achieve desired
forces of non-rigid contact throughout the complete trajectory.
The second is adapting the trajectories to the interventions of
an instructor, modifying the trajectories through physical contact
or with the use of predefined gestures. The interaction puts the
instructor into the role of a tutor who coaches the robot to achieve
the desired performance. Both adaptation to the environment and
coaching rely on the use of a unified trajectory representation,
i.e. the dynamic movement primitives (DMPs). The combination
creates an intuitive and user-friendly interface to learning and
modifying robotic trajectories with the potential of creating
complex object-interaction trajectories.

Not many papers describe adaptation of learned trajectories for
non-rigid contacts. Initial results of DMP adaptation methods, ex-
panded on in this paper, were presented in [31,32]. The approach
was expanded on by Ernesti et al. [33] to include transient mo-
tions and [34] to include structural bootstrapping from experience.
Wiping with a robot has also been studied from other perspec-
tives, including using dynamic models and operational space dy-
namics [35].

Coaching has been applied also in context of other robotic
tasks. Gruebler et al. [36] used voice commands as a reward func-
tion in their learning algorithm. Verbal instructions of non-experts
were used to modify movements obtained by human demonstra-
tion [37]. Physical contact was also used, for example, by Lee and
Ott [38] who used kinesthetic teaching with iterative updates to
modify the behavior of a humanoid robot. Coaching based on ges-
tures and obstacle avoidance algorithmswas applied to DMPs [39].
This approach is expanded on in this paper with force feedback.

In the next section we provide the basics of DMPs and the
algorithm of encoding them. Section 3 provides the core algorithm
of the adaptation approach. Three differentmethods are explained.
Coaching, as the means to adapt parts of the trajectory based on
the user input is explained in Section 4, followed by the results in
Section 5 and a discussion with conclusions.

2. Learning of periodic dynamic movement primitives

In this paper we build on periodic dynamic movement
primitives. For the sake of completeness we provide the basics of
the DMP notation and an algorithm for extracting the frequency
of the demonstrated signals. The algorithm of learning of weights
that encode a DMP follows. It is the basis for both adaptation to
external force and the coaching algorithms.

2.1. Periodic DMPs

The formulation of DMPs in this paper is based on [2]. For
a complete DMP overview see [9]. The description is for clarity
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