Accepted Manuscript

Real-time method for tip following navigation of continuum snake arm robots

David Palmer, Salvador Cobos-Guzman, Dragos Axinte

PII: S0921-8890(14)00108-0

DOI: http://dx.doi.org/10.1016/j.robot.2014.05.013

Reference: ROBOT 2289

To appear in: Robotics and Autonomous Systems

Received date: 12 August 2013 Revised date: 16 May 2014 Accepted date: 26 May 2014

Please cite this article as: D. Palmer, S. Cobos-Guzman, D. Axinte, Real-time method for tip following navigation of continuum snake arm robots, *Robotics and Autonomous Systems* (2014), http://dx.doi.org/10.1016/j.robot.2014.05.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Real-Time Method for Tip Following Navigation of Continuum Snake Arm Robots

David Palmer 1, Salvador Cobos-Guzman 1, Dragos Axinte 1*

1. Rolls-Royce UTC in Manufacturing Technology University of Nottingham, Department of Mechanical, Materials and Manufacturing Engineering, Nottingham, NG7 2RD, United Kingdom

ABSTRACT

This paper presents a novel technique for the navigation of a snake arm robot, for real-time inspections in complex and constrained environments. These kinds of manipulators rely on redundancy, making the inverse kinematics very difficult. Therefore, a tip following method is proposed using the sequential quadratic programming optimization approach to navigate the robot. This optimization is used to minimize a set of changes to the arrangement of the snake arm that lets the algorithm follow the desired trajectory with minimal error. The information of the Snake Arm pose is used to limit deviations from the path taken. Therefore, the main objective is to find an efficient objective function that allows uninterrupted movements in real-time. The method proposed is validated through an extensive set of simulations of common arrangements and poses for the snake arm robot. For a 24 DoF robot, the average computation time is 0.4 seconds, achieving a speed of 4.5mm/s, with deviation of no more than 25mm from the ideal path.

Keywords: Hyper-Redundant Manipulator, Optimization, Snake Arm, Tip Following

e-mail: Dragos.Axinte@nottingham.ac.uk

^{*}Corresponding author Tel: +44 (0)1159514117; Fax: +44 (0)1159513800;

Download English Version:

https://daneshyari.com/en/article/10326781

Download Persian Version:

https://daneshyari.com/article/10326781

<u>Daneshyari.com</u>