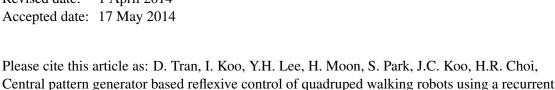
Accepted Manuscript

Central pattern generator based reflexive control of quadruped walking robots using a recurrent neural network

Duc Trong Tran, Ig Mo Koo, Yoon Haeng Lee, Hyungpil Moon, Sangdeok Park, Ja Choon Koo, Hyouk Ryeol Choi

PII: S0921-8890(14)00100-6

DOI: http://dx.doi.org/10.1016/j.robot.2014.05.011


neural network, Robotics and Autonomous Systems (2014),

http://dx.doi.org/10.1016/j.robot.2014.05.011

Reference: ROBOT 2287

To appear in: Robotics and Autonomous Systems

Received date: 7 September 2013 Revised date: 1 April 2014 Accepted date: 17 May 2014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Central Pattern Generator Based Reflexive Control of Quadruped Walking Robots Using a Recurrent Neural Network

Duc Trong Tran^a, Ig Mo Koo^a, Yoon Haeng Lee^a, Hyungpil Moon^a, Sangdeok Park^b, Ja Choon Koo^a, Hyouk Ryeol Choi^a

^aIntelligent Robotics and Mechatronic Systems Lab, School of Mechanical Engineering,
Sungkyunkwan University, Suwon, Korea.

^bDivision of Applied Robot Technology, Korea Institute of Industrial Technology, Ansan, Korea.

Abstract

This paper presents a novel Central Pattern Generator (CPG) model for controlling quadruped walking robots. The improvement of this model focuses on generating any desired waveforms along with accurate online modulation. In detail, a wellanalyzed Recurrent Neural Network is used as the oscillators to generate simple harmonic periodic signals that exhibit limit cycle effects. Then, an approximate Fourier series is employed to transform those mentioned simple signals into arbitrary desired outputs under the phase constraints of several primary quadruped gaits. With comprehensive closed-form equations, the model also allows the user to modulate the waveform, the frequency and the phase constraint of the outputs online by directly setting inner parameters without the need for any manually tuning. In addition, an associated controller is designed using leg coordination Cartesian position as the control state space based on which stiffness control is performed at sub-controller level. In addition, several reflex modules are embedded to transform the feedback of all sensors into the CPG space. This helps the CPG recognize external disturbances and utilize inner limit cycle effect to stabilize the robot motion. Finally, experiments with a real quadruped robot named AiDIN III performing several dynamic trotting tasks on several unknown natural terrains are presented to validate the effectiveness of the proposed CPG model and controller.

Keywords: Central Pattern Generator, Quadruped Robots, Biomimetic Control.

Download English Version:

https://daneshyari.com/en/article/10326784

Download Persian Version:

https://daneshyari.com/article/10326784

<u>Daneshyari.com</u>