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h i g h l i g h t s

• A new pose estimation algorithm is proposed.
• The difference between the mobile robot desired and current pose is computed.
• The mobile robot sensor readings and the virtual sensor readings are employed.
• The algorithm is tested by simulation and real-world experimental results.
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a b s t r a c t

This paper proposes a new pose estimation algorithm in the framework of robotic navigation problems.
The algorithm gives the mobile robot (MR) pose on the basis of the difference between the MR desired
pose and theMRcurrent pose. In this regard theMR sensor readings and the readings of a virtual sensor are
employed. The algorithm is advantageous in comparisonwith other pose estimation algorithms including
those based on classical filter approaches because of the small computation time. Simulation and real-
world experimental results are included to illustrate the effectiveness of the pose estimation algorithm
and its potential for integration in MR control structures and algorithms.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The localization is a key challenge in the fields of mobile
robotics and of autonomous driving. The importance of this topic
results from the fact that the model-based approaches are based
on robotic platforms that navigate usingmathematical models. For
a given robot, its models are updated through environment mea-
surements or observations which describe, to a certain degree, the
robot position and orientation, referred to as pose or as posture,
namely, the localization of the robot is carried out. The observa-
tions, most likely affected by different disturbances, are used to
correct the mobile robot (MR) model. Once the MR pose is known,
it is further used in navigation problems.
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Thenavigation strategy implied in our paper involves twomajor
steps:

(i) the MR first acquires the environmental data for map recon-
struction,

(ii) the MR next navigates to specific locations combining the map
produced at step (i) with the localization.

Many solutions to the localization problem have been reported
in the literature. These solutions can be divided in two categories,
choosing an appropriate sensor and the data processing by spe-
cific filters. Several approaches have been given in this regard by
means of appropriate sensors as video cameras, infrared sensors,
ultrasonic sensors and laser scanners. The step (ii) in the naviga-
tion strategy is associatedwith filtering techniques such as Kalman
filters [1–3], Bayesian filters [4–6], or particle filters (PFs) [4,5,7].

Since our paper uses the concept of virtual sensor that is in-
spired from the PF approach, the analysis of the state-of-the-art on
sensor fusion techniques in MR localization problems is focused as
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follows on laser scanners combinedwith PFs, but other sensors and
sensor fusion techniqueswill be considered aswell. The occupancy
grid concept is applied in [8] to perception; a sensor-based map is
derived using a probabilistic sensor model. The recognition of land
marks using a laser scanner is given in [9]; theMRpose is estimated
by detecting the break points in the acquired data set. A three lay-
ers (modules) MR navigation system is proposed in [10]; the layers
perform the localization by the Iterative Closest Points using a 3D
laser scanner, the obstacle avoiding behavior and the target point
navigation control loop, and they solve the Simultaneous Localiza-
tion And Mapping (SLAM) problem. The localization of dynamic
targets is treated in [11] by a 2D laser scanner,which is proved to be
more robust in comparison with computer vision techniques. The
tracking of moving objects is carried out in [12] by movement de-
tections algorithms that employ Kalman filters and laser scanners.
Several experiments are conducted in [13] in order to explore the
links between the laser sensor accuracy and the SLAM.Mapdesigns
with segment lines constructed on laser scanner measured points
are suggested in [14] tomodel the objects including obstacles with
a minimum number of lines using density based clustering. Laser
scanner and wireless channel measurements are used in [15] to
achievemap building and obstacles recognition; a probabilistic ap-
proach to wireless-based mapping is formulated. The analysis of
PF approaches carried out in [16] outlines that assumptions on the
state-space and on the noise distribution are not required. The PFs
have proved to be successful in MR localization as shown in [17],
where the FastSLAMalgorithm is proposed; the algorithm employs
the PF approach to perform a logarithmic scale with the number
of the map landmarks, and less demanding computation time is
obtained. A simultaneous mobile robot localization and people
tracking approach is presented in [18]; the approach is based on
a conditional PF that uses a high distribution for people locations,
which is conditioned by a small distribution of the MR pose. PF ap-
proaches are involved in [19] in the localization and mapping of
multiple robots. Dynamical environments are mapped in [20] us-
ing a combination of PFs and hidden Markov models.

The above analysis on the state-of-the-art highlights that PFs
combined with laser scanners are widely used in the localization
of MRs and pedestrians in dynamical environments. This combi-
nation has proved to be successful in the current research trend
focused on the development of efficient algorithms. These al-
gorithms are embedded in many control strategies. The current
control strategies include optimal control [21–25], sliding mode
control [26–28], stable nonlinear control [29], fuzzy logic and con-
trol [30–33], neural networks [34,35], adaptive control [36,37],
repetitive and iterative learning control [38,39].

This paper offers a new pose estimation algorithm, which com-
putes the difference between the MR desired pose and the MR
current pose using the difference between the MR sensor read-
ing (i.e., the reading of the real-world sensor), and the reading of
a virtual (i.e., simulated or experimental) sensor that describes the
actual desired pose. In this context, a sensor denotes any type of
scene measurement and environmental data acquisition system.
The simulated sensors are used to acquire virtual data from the
reconstructed environment map, stored in the MR memory. The
information perceived by the virtual sensors is further compared
with the actual real-world measurement obtained from the real
sensor. The notion of virtual is used in this paper as a synonym
of simulated, i.e., computed offline in an abstract environment. A
pose estimation algorithm is proposed in the framework of this ap-
proach. Therefore, our approach is a reconciliation between two
sources of information, namely the desired trajectory is expressed
as a collection of sensor particles readings.

The odometry can be applied to obtain the posture by generally
measuring the rotating angles of the MR’s driving wheels. The
odometry-based algorithms are considered to be fast, but they

use the results of measurements that can be affected by slippages
due to the possible low quality of the sensors. Our approach is
based on the virtual sensor that uses the result of a simulation. In
otherwords, the desiredposture is imposed and themeasurements
corresponding to these postures are simulated.

Our approach is important because it offers the following ad-
vantages in comparisonwith other current approaches reported in
the literature [16–20]:
– It offers the reduction of the computation time required for lo-

calization within the reconstructed environment map.
– The pose estimation algorithm is organized as a control al-

gorithm in a conventional control loop. In this regard it can
benefit from the specific features related to robotic navigation
problems viewed as control problems from the performance
specifications point of view.

The combination of these two advantages leads to a low-cost
navigation strategy with enhanced performance given by the new
pose estimation algorithm. This strategy can be inserted in robot
control structures and algorithms.

The rest of the paper has the following structure: the pose es-
timation problem is stated mathematically in Section 2. Our pose
estimation algorithm is described in Section 3. Simulation and ex-
perimental results are given in Section 4. The conclusions are dis-
cussed in Section 5.

2. Problem statement

A set of assumptions is defined before going into the mathe-
matical description of the problem set forth. Firstly, the navigation
domain, or map, has to be known, or reconstructed, while the vir-
tual population of sensor particles is simulated. TheMR pose is de-
rived from the comparison between the simulated sensors and the
actual observations. Secondly, the sensors do not measure directly
theMRpose, but a particular interactionwith the environment. For
example, if a laser scanner is used for measurements, the observa-
tions depict the length of each reflected light beam associatedwith
a firing angle. Thirdly, the desired trajectory of theMR is defined as
a successive set of poses. The two characteristics of PF approaches,
which are actually correlated, the need of simulation of a virtual
population of sensors and the difference between the information
structure of the desired trajectory and the sensor measurements,
require a high computation time.

The estimator proposed in this paper computes the MR pose in
terms of the comparison of two data sets. The first data set is the
MR sensor reading and the second data set is the reading of the vir-
tual (simulated) sensor. The problem to be solved is the calculation
of the MR pose using the two data sets, that is, data from the real
measurements and data from the virtual sensor. The difference be-
tween the two poses is expressed in pose coordinates.

The firing angle αi is the angle between the laser beam and the
central axis of the sensor, and this central axis is in our case the
same as the central axis of the MR as shown in Fig. 1. The distance
between the sensor and a target point is ρi, and the target point
is the intersection of the laser beam with an object in the envi-
ronment, as shown in the sensor measurement setup presented in
Fig. 1.

Using the notations αmin for the minimum measured firing an-
gle, αmax for the maximum measured firing angle and ∆α for the
sensor angular resolution, with these three parameters fixed and
given by the sensor manufacturer, and the notation n for the num-
ber of measured positions, we define the following 2 × n sensor
reading matrixM:

M =


ρ1 · · · ρi · · · ρn
α1 · · · αi · · · αn


. (1)

The first row inM denotes the distance between the current sensor
and the target point ρi, i = 1 . . . n, and the second row gives the
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