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h i g h l i g h t s

• Formation control with dynamic formation geometry.
• Goal is to minimize the uncertainty about the cooperative observation of a target.
• Uncertainty term is part of a cost functional minimized by the formation geometry.
• Cooperative target estimator based on a particle filter.
• Simulated and real heterogeneous robot results (indoors and outdoors).
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a b s t r a c t

In this paper we introduce a formation control loop that maximizes the performance of the cooperative
perception of a tracked target by a team of mobile robots, while maintaining the team in formation, with
a dynamically adjustable geometry which is a function of the quality of the target perception by the
team. In the formation control loop, the controller module is a distributed non-linear model predictive
controller and the estimator module fuses local estimates of the target state, obtained by a particle
filter at each robot. The two modules and their integration are described in detail, including a real-time
database associated to awireless communication protocol that facilitates the exchange of state datawhile
reducing collisions among teammembers. Simulation and real robot results for indoor and outdoor teams
of different robots are presented. The results highlight how our method successfully enables a team of
homogeneous robots to minimize the total uncertainty of the tracked target cooperative estimate while
complying with performance criteria such as keeping a pre-set distance between the teammates and the
target, avoiding collisions with teammates and/or surrounding obstacles.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Most of the past and current work on motion coordination of
multiple (possibly heterogeneous) vehicles [1,2] focuses on con-
trolling a vehicle formation with a given nominal geometry and a
pre-determined trajectory or a static destination location, in some
cases more [3] or less [4] compliant with the presence of obstacles
on the formation trajectory. Such methods typically:
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• assume full knowledge of the formation state, expressed as the
relative distances and bearings among all the vehicles, and/or

• rely on local memory-less interactions, often jeopardizing
global formation stability.

A vehicle formation is supposed to serve one or more mis-
sion objectives [5]. One such interesting case concerns localizing
or tracking relevant objects, here and henceforth denominated as
targets. Recent formation control methods go beyond simply stat-
ing the desired geometry for the formation by providing some
meta-specifications (e.g., for velocitymatching, connectivitymain-
tenance and containment control among the formation members
[6,7]) but often give little or no relevance to the requirements
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imposed by target localization and/or tracking to the formation
geometry, so as to improve the target detection and tracking qual-
ity (e.g., accuracy). Active cooperative perception methods in sen-
sor and robot networks [8] concern precisely this problem: how to
actively move mobile sensors so as to improve the accuracy of tar-
get detection by the network, as the result of (spatially and tempo-
rally) fusing the information from all the static and mobile sensors
which observe the target during a step sequence. In this paper we
propose an integrated solution of the ‘‘target localization and track-
ing by a vehicle formation’’ problem, supported on the following
novel contributions:

• a cooperative target tracker based on a particle filter (PF) which
estimates the target position and velocity;

• a non-linear model-predictive formation controller, with the
control objective of efficiently tracking a target based on coop-
erative perception while achieving criteria such as minimizing
the uncertainty about the target position, keeping a pre-set dis-
tance to the tracked object and/or avoiding collisions between
teammates in the formation while tracking the target.

Therefore our solution integrates two basic modules: (i) con-
troller and (ii) estimator.

Our controller consists of a distributed non-linear model pre-
dictive controller (DNMPC). Some predominant approaches in
multi-robot formation control are: virtual structures, behavior-
based and leader-following [9–11]. A widely used controller based
on the leader-following approach is the model predictive con-
troller (MPC) [12] which was recently introduced in holonomic
robots [13]. The primary focus of most existing methods is only to
maintain the formation based on pre-planned paths and static en-
vironment assumption. In a dynamically changing environment, if
the trajectories are pre-defined, linear MPC applied to a non-linear
system can still maintain a desired formation.

Recent approaches for active cooperative target tracking by a
robot team formation such as [8] rely on computationally heavy
optimization processes. By introducing the Gauss–Seidel relax-
ation in an iterative algorithm to detect the next best sensing lo-
cation for the mobile sensors, the authors in [8] achieve a linearly
growing computational complexity over methods like grid-based
exhaustive search which have similar tracking accuracy but where
the complexity grows exponentially with the number of sensors.
The novelty in our approach of integrating the controller and es-
timator modules to achieve a formation that minimizes the joint
uncertainty covariance of the tracked target lies in the fact that
the controller module of each robot performs an optimization over
an already fused target posterior which makes the computational
complexity of the optimization process constant with respect to
the number of mobile sensors in the team. Furthermore the de-
coupling of the optimization problem from the estimates fusion
makes the approach more reliable in case of individual sensor or
inter robot communication failures.

The field of cooperative target tracking has gained a lot of at-
tention in the recent years [14–16]. Many efficient solutions such
as decentralized PF for multiple target tracking [15] and global
position sharing based on non-egocentric tracking of objects [16]
have beenproposed. These solutions focusmore on compacting the
data shared for communication bandwidth reduction and to over-
come the problem of target occlusion. Some solutions such as [17]
assume multiple static platforms and hence do not address the
self-localization errors that creep in when using multiple mobile
sensor platforms. The estimator in our work consists of a coopera-
tive target tracker based on a PF described in full detail in previous
work [18,19]. Essentially the core of it is a PF, modified to handle,
within a single unified framework, the problemof complete or par-
tial occlusion for some of the involved mobile sensor platforms,
as well as inconsistent estimates in the global frame among sen-
sors, due to observation errors and/or self-localization uncertainty

of the sensor platforms. This acts as a feedback module providing
the position and velocity estimates of the tracked object to the con-
troller which in turn uses these estimates as well as the teammate
positions to generate velocity set points for the robot running the
integrated system.

The robots in our formations share information over wireless
communication, which, given its low reliability, is another source
of errors that increase cooperative perception noise. Beyond un-
controllable interferences inherent to the operational environ-
ment, typical wireless communication protocols are also subject
to transmission collisions that lead to packet losses, which are par-
ticularly relevant when the robots share their states periodically in
broadcastmode. Thus,we use a communication protocol that auto-
synchronizes the robot transmissions over the wireless medium,
reducing collisions and improving the quality of the communica-
tion. We built upon the work in [20] to extend such protocol to
ad-hoc networks that are better suited to robot teams [21]. We
also used this protocol to provide an alternative relative localiza-
tion system based on RF-ranging [21] later combined with signal
strength information for faster localization assessment. The actual
information sharing is carried out over a distributed shared mem-
orymiddleware called Real-Time Data Base (RTDB) [22], which de-
couples local processing from communication delays and provides
fast access to remote data with age information.

The rest of the article is organized as follows. The controller and
the estimator modules are detailed in Section 2. Then we describe
their integration in Section 3. This is followed by our approach’s
implementation details on our testbed and the experimental
results in Section 4. We conclude with comments on future work
in Section 5.

2. The controller and estimator modules

2.1. Controller module

The distributed non-linear model predictive controller
(DNMPC-)based formation controller used in thiswork has its roots
in the non-linear model predictive controller (NMPC) developed
and implemented in one of our previous works [23]. NMPC has
a partially distributed architecture where each robot calculates
its own control inputs U solving its own optimization problem,
and using a central unit only as a communication bridge. In the
fully distributed architecture of the DNMPC the communication
is performed by a real-time data base (RTDB) system [21]. This
enables the robots to be communication-failure tolerant. Further-
more, even in the rare case of a communication failure, the robots
use their predictive open-loop strategy to determine their team-
mate states making the DNMPC even more robust.

The DNMPC ability to create and maintain a formation is due to
the fact that the cost functions used by the controllers of each robot
in the team are coupled. This coupling occurs when the teammate
states (position and velocity) are used in the cost function of each
robot controller to enforce the desired formation geometry, thus
the actions of each robot affect its teammates. The DNMPC iterates
through the following two components:

• optimizer: uses an online numeric minimization method to
optimize the cost function and generate the control signals.
The resilient propagation (RPROP) method that is used here
guarantees quick convergence;

• predictor: predicts the state evolution based on the system
state model. The system consists of the robot itself, its team-
mates in the formation or another object in the environment
with an impact on the formation objectives, such as a static ob-
stacle or a moving target.
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