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a b s t r a c t

Stochastic Data Envelopment Analysis (DEA) models have been introduced in the literature to assess the
performance of operating entities with random input and output data. A stochastic DEA model with a
reliability constraint is proposed in this study that maximizes the lower bound of an entity's efficiency
score with some pre-selected probability. We define the concept of stochastic efficiency and develop a
solution procedure. The economic interpretations of the stochastic efficiency index are presented when
the inputs and outputs of each entity follow a multivariate joint normal distribution.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Data Envelopment Analysis (DEA) is a non-parametric method
used to evaluate the performance of a set of operating entities called
decision making units (DMUs) that consume similar inputs and
create similar outputs. It has been widely applied in areas such as
healthcare, agriculture and banking as well as assessing low carbon
supply chains. Cooper et al. [10] provided an introduction of the
various DEA models. Cook et al. [6] discussed the selection of a DEA
model. The reader is referred to Cook and Seiford [5] and Liu et al.
[17,18] for extensive reviews of DEA's development and applications.

Traditionally, the efficiency score of a DMU is defined as the ratio
of the multiplier-weighted sum of its outputs to the multiplier-
weighted sum of its inputs. The constant returns-to-scale DEA
model, namely, the CCR DEA model [4], computes the efficiency
index of a DMU, which is the maximum efficiency score in terms of
the input and output multipliers. Any DMU with an efficiency index
of one is rated as CCR efficient in the sense that it is not dominated
by any observations or their linear combinations. The efficiency
index of an inefficient DMU is less than one and reveals the
proportional decrease necessary in its inputs to reach the estimated
efficiency frontier, which is spanned by the efficient units.

It is widely acknowledged that variability and uncertainty are
associated with the input and output data of a production process
due to its inherent stochastic nature or specification errors [1]. Land
et al. [14] gave convincing examples in agriculture, manufacturing,
product development, education, health care and military for which
it is necessary to incorporate stochastic variation of data in the

concept of “efficiency”. As a consequence, both multiplier and
envelopment DEA models have been generalized to deal with
stochastic inputs and outputs. The concepts of dominance and
efficiency are extended to the stochastic domain in these models,
where chance-constrained programming is applied to model the
production frontier defined with stochastic inputs and outputs.

Land et al. [14] proposed a stochastic efficiency analysis formula-
tion in envelopment form where a chance constraint is placed on
every output category. In this study we focus on stochastic DEA
models in multiplier form as they explicitly take into account the
correlations among input and output data within every DMU, which
are generally considered more important than dependencies among
the observed DMUs but are ignored in envelopment models.

Cooper et al. [8,9], Huang and Li [12,13] and Li [16] developed
joint stochastic efficiency analysis models where probabilistic
efficiency dominance is established via a joint chance constraint.
No computational results have been reported in the literature
possibly due to the strong intractability of these models.

We next examine two multiplier form stochastic DEA models
with a marginal chance constraint on every DMU. The following
“satisficing” DEA model was presented in Cooper et al. [7]:
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In the model, it is assumed that every unit in the set of DMUs,
N¼ f1;2;…;ng, consumes resources in m categories and creates
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products or services in s categories. P means “Probability”, ~y j ¼
ð ~y1j; ~y2j;…; ~ysjÞT and ~x j ¼ ð ~x1j; ~x2j;…; ~xmjÞT represent, respectively,
the vectors of stochastic output and input values of DMU jAN,
while uARs and vARm are non-negative virtual multipliers to be
determined by solving the above model for DMU o, which is the
DMU under evaluation. Throughout this paper, it is assumed that
~yrj and ~xij are continuous random variables for any r¼ 1;2;…; s
and any i¼ 1;2;…;m. αjAð0;1Þ is pre-selected and is the mini-
mum probability required to fulfill the corresponding chance
constraint.

We note that model (1) is adapted from the traditional CCR DEA
model [4] and falls in the class that Charnes and Cooper [3] refer to
as “P-models”. As Charnes and Cooper suggested, the objective of a
“P-model” can be linked to the concept of “satisficing” defined by
Simon [21]. Along this perspective, the unity in the objective
function of model (1) can be interpreted as an aspiration level,
while model (1) maximizes the likelihood for the efficiency score
of DMU o to achieve this aspiration level.

Assuming that the random outputs and inputs of each DMU j
follow a multivariate normal distribution with a mean vector

ðyT
j ; x

T
j ÞT and a variance–covariance matrix Λj, Olesen and Petersen

[20] developed a model that optimizes the rate at which the mean
input vector for the DMU under evaluation has to decrease in
order to achieve efficiency. The original formulation presented by
Olesen and Petersen [20] has a typo. The model after the necessary
correction is presented as follows:
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In the model, ΦðÞ is the standard normal distribution function and

Φ�1ðÞ its inverse.
As will be illuminated in the next section, the stochastic

efficiency index πn
o given by model (1) is not a radial measure.

In contrast, model (2) returns a radial measure θn

o and reduces to
the CCR DEA model when there is no variability in input and
output data. Consequently, (2) is a general model with CCR DEA
model as a special case. However, our subsequent analysis will
show that model (2) does not necessarily return a correct
stochastic efficiency index. In this study, we propose a stochastic
efficiency analysis model that corrects this shortcoming of model
(2) using the concept of aspiration level introduced in model (1).
We next analyze an example to motivate the study.

2. A motivating example

Under the assumption of joint normality model (1) can be
rewritten as follows:
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oÞ.
Models (2) and (3) are interpreted in this section using an

example of three DMUs with a single output and a single input
that follow a joint normal probability distribution. As shown in
Olesen and Petersen [20], each chance constraint uTy j�vTx jþ

Φ�1ðαjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuT ; �vT ÞΛjðuT ; �vT ÞT

q
r0 in these two models gener-

ates a supporting hyperplane to a confidence region of DMU j at
some confidence level related to the chance constraint probability
level αj. Olesen and Petersen [20] further noted that the produc-
tion possibility set (PPS) is spanned by these confidence regions in
the input-output space. We present the motivating example in
Figs. 1 and 2 without discussing the mathematical details. The
confidence region of DMU j in both figures is an ellipsoid denoted
by DjðαjÞ j¼1, 2, 3, αj450%, with the mean input and output
ðxj; yjÞ of DMU j at the center, where the size of the region is
derived from the probability level αj used in the jþ1 th chance
constraint in model (3). The straight line in the two figures
spanned by ellipsoid D1ðα1Þ is the production frontier.

The other ellipsoids in the figures are adjusted confidence
regions for DMU 2, the DMU under evaluation. These adjusted
regions are denoted by D0

2ðq;βÞ with the mean output y2 and the
contracted mean input qx2 from DMU 2 at the center, where
qAð0;1� is a radial contraction rate of the mean input vector x2

Fig. 1. Confidence regions used in models (2) and (3).

Fig. 2. Confidence regions used in the proposed model.
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