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In this paper we present a new approximation for computing lower bound for the fixed charge
transportation problem (FCTP). The lower bounds thus generated delivered 87% optimal solutions for 56
randomly generated small, up to 6 x 10 in size, problems in an experimental design. For somewhat larger,
10 x 10 and 10 x 15 size problems, the lower bounds delivered an average error of 5%, approximately,
using a fraction of CPU times as compared to CPLEX to solve these problems. The proposed lower bound
may be used as a superior initial solution with any other existing branch-and-bound method or tabu
search heuristic procedure to enhance convergence to the optimal solution for large size problems which
cannot be solved by CPLEX due to time constraints.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The fixed charge transportation problem (FCTP) is a variant of
the transportation problem (TP), which arises when both variable
and fixed costs are present. The FCTP is formulated as follows:

s D
P : Minimize Z= Y ¥ (cixij+fiyip) 1
i=1j=1
. D .

Subject to > Xj=a;, i=1,2,...,S, )
j=1
S .
Y xj=bj, j=12,..D, 3)
i=1

where

1 iinj>0
Yi=\0 ifx;=0

a; represents the supply at supplieri (i=1, 2,..., S), bj is the demand
at customer j (j=1, 2,..., D), and x;; is the number of units shipped
by supplier i to customer j at shipping cost per unit ¢; plus fixed
cost f;;, assumed for opening this route.

Over the decades numerous proposals have been made to obtain
either exact or approximate solutions for the FCTP (e.g., [1,2,4,21-23]).

x20, i=1,2,...5:j=1, 2,....D;
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It is known that the optimal solution of FCTP occurs at an extreme
point of the feasible region [15]. Based on this property, many
researchers have made claims of computational success in generating
the optimal solution. Among the many methods developed, only two
guarantee an optimal solution: the stage-ranking method [24,27] and
the branch-and-bound method [26,28]. Both of these methods are
based on enumeration procedures and on a comparison of objective
function values for a specified domain of distributions. The exact
method of ranking extreme points requires analyzing a large domain
of allocation distributions, while the effort required to solve an FCTP
using exact branch-and-bound method grows exponentially with the
size of the problem.

The above-mentioned methods are constrained by limits on
computer time. Because of this limitation, some authors [5,6,10-
12,18,32] have turned to efficient heuristic algorithms for solving
FCTPs. Aguado [7] proposed an approach based on intensive use of
the Lagrangean relaxation techniques. Sun et al. [29] provided a
tabu search heuristic procedure. Glover and Kochenberger [13]
presented a parametric approach for solving fixed-charge problems
and they evaluated it by reference to transportation networks. Klose
[19] presented algorithms for solving the single-sink FCTP whereas
Jawahar and Balaji [16] solved the FCTP with a two stage supply
chain distribution problem function. Other authors [14,17] have
used the spanning tree-based genetic algorithm. Classical branch-
and-bound methods have been applied to specific real-world
applications by several authors [9,25,31]. Adlakha et al. [3] devel-
oped an analytical method that starts with a linear formulation of
the problem and converges to an optimal solution by sequentially
separating the fixed costs and finding a direction to improve the
value of the linear formulation while continually tightening the
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lower and upper bounds. Schrenk et al. [30] analyzed degeneracy
characterizations for the transportation paradox in linear transpor-
tation problems and the fixed charge problem.

The purpose of this paper is to provide an effective lower
bound by adopting an approximation of the FCTP's objective
function. The proposed lower bound is found to be much superior
to the linear bound developed by Balinski [8] and yields optimal
solutions for 87% randomly generated 3 x 5 to 6 x 10 problems in
an experimental design. Experiments with somewhat larger,
10 x 10 and 10 x 15 in size, problems also support desirability of
using the lower bounds for FCTP approximation when the CPU
times are compared with those for finding exact solutions using
an NLP solver. The rest of the paper is structured as follows. In
Section 2 we present a lower bound formulation for the FCTP
optimal value. Section 3 presents an example to illustrate the
proposed approximation. In Section 4, we carry out a com-
putational study and present percentage errors in the optimal
solution value as obtained by the lower bounds and the corre-
sponding FCTP values. In Section 5, we further discuss our
proposal and, based on our computational experiments, make
recommendations for solving an FCTP along with the limitations.
Conclusions follow in Section 6 along with possible directions for
future research.

2. Approximation to FCTP lower bound

In this Section, we develop an approximation of an FCTP in
contrast to the linear approximation as provided by Balinski [8].
Balinski proposed relaxing the integer restriction on y;;, with the
property that y;;=x;;/m; where m;=min (a;, bj). This relaxed tran-
sportation problem of an FCTP, problem B, is a classic TP with unit
transportation costs Cj=c;;+f;j/m;. Balinski shows that the optimal
solution {x£} to problem B provides a lower bound to the optimal
value of FCTP, i.e., Z(B)=3>C; xE<Z*(P)sY ¥ (cixb+fiye) =Zg(P).

We propose an approximation, Py, for FCTP costs as proposed in
Fig. 1 where, for the sake of convenience, , f, ¢, and m represent x;;,
fii» cij and my;, respectively. The idea here is to estimate FCTP costs
more closely than the linear approximation provided by Balinski,
in order to improve the solution estimate for the FCTP.

Define Pp(x) =avx + px +k, 4
where

PL(0)=0, (5)
P (m)=f+cm, (6)
P’ (m)=c. (7)

Egs. (5) and (6) ensure that the proposed curve, P;(x), starts at
the origin and equals the FCTP cost at m. Eq. (7), where P’} denotes
the derivative of P;, ensures that P;(x) is tangential to FCTP cost
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Fig. 1. Approximation for Lower Bounds to FCTP Costs.

function at x=m. Since P;(x) is concave in x, being tangential at
x=m helps us select the function in the P;(x) family such that it is
closest to FCTP cost. We use these equations to determine
coefficients in Pj(x).

P.(0)=0=k=0.
Egs. (6) and (7) yield
avm+pm=f4cm

and
a
aym P=¢
Solving these two equations, we get
'
=
and g =c-(f/m)
Therefore,
P (x) = j—% VX + {c— %}x

Theorem 1. The approximation curve, P;(x), lies entirely above the
Balinski linear approximation and below the FCTP cost line.

Proof: The proof is somewhat obvious because of the way the
approximation curve Pj(x) is defined. We nevertheless carry out
the proof to verify the calculations of coefficients « and .

Consider P (x)-B(x)

= %o (ke £y

=L x-ZLx

= ZLvx{1- £}

>0 forO<x<mandf >0.

Now consider P(x) versus P(x)=(c x+fy). It is clear that P;(x)=
P(x)=0 as y=0 when x=0. Assume x > 0 so that y=1.

P(x)-Pr(x)
=(cx+-Zhvr-{c-£}x
=f-ZLVx+Ex

2
:f{1—7¢%}
>0and<f forO<x<mandf >0.

2.1. P approximation for problem P
s S, D 2f; fi

P, : Minimize Z= b X+ {C_i }x 8

' i§1j§leU Y my 7Y ®)

D
Subjectto Y x;=a; fori=1,2,...,S,
=1

i xj=b; forj=1,2,...D,
;; 12 0 forall (i,j),
The optimal solution {xiLj} to problem P, can be easily modified
into a feasible solution, {x5 y%}, of P as follows:
yhi=0 if xb;j=0,

and yhi=1 if x>0
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