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• 3D whole-body motion recovery from an occluded monocular image sequence.
• Coordinate transformations of statistical database (e.g., HMM parameters).
• A new particle filtering algorithm for estimating baselink position and orientation.
• Concurrent motion recovery and motion recognition.
• Inference from optical flow of feature points.
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a b s t r a c t

This paper proposes a method for 3D whole-body motion recovery and motion recognition from a se-
quence of occluded monocular camera images based on statistical inference using a motion database. In
the motion database, each motion primitive (e.g., walk, kick, etc.) is represented in an abstract statistical
form. Instead of extracting rich information by expensive computation of image processing,wepropose an
inferencemechanism from low level image features (e.g., optical flow), inspired by psychological research
on how humans perceivemotion. The proposed inferencemechanism recovers the 3D body configuration
and finds the closest motion primitive in the motion database. Observations in 2D camera image space
can be recognized even though the motion database is prepared in a different space (such as joint space)
by coordinate transformation of the statistical motion representation. The approach is view invariant
since the demonstrator’s baselink position and orientationwith respect to camera coordinates are tracked
using an extended particle filter. Finally, an experimental evaluation of the presented concepts using a
56-degree-of-freedom articulated human model is discussed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Motion understanding of human movements from a camera
system which is mounted on a robot is important for realizing
smooth and practical human–robot interaction. Although a studio-
type motion capture system with several cameras provides good
tracking accuracy, the system is expensive and requires a large set
up in the environment. Also, human subjects have to wear opti-
cal markers on their body and motions can be captured only in
the studio. Although a wearable type of a motion capturing system
can eliminate space restriction, subjects still have to wear sensors
on their bodies. Thereafter, it is inconvenient to use them in daily
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life environments. Therefore, a new technology for human motion
understanding using onboard camera systems seems beneficial for
seamless human–robot interaction.

Perception of human motion has been studied in psychology
[1–5] in the framework of moving light display (MLD). The mov-
ing light display is an experimental setup to show a humanmotion
by lights attached to various parts of the body. These studies report
that human can recover and understand three-dimensional human
movements from the video while a single static image of the lights
is insufficient to find the human shape. The experiments show
that humans have high sensitivity to human motion perception
and can recover 3D motion from a temporal sequence of images
without any structural information. Human motion perception
includes spatial and temporal understanding. This suggests that
humans use the temporal information and the memory of human
motions to recover missing spatial information.
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With the final goal of capturing three-dimensional human mo-
tions and recognizing action classes from an onboard camera sys-
tem, we focus on an inference mechanism from 2D optical flow
without structure information.1 An approach is proposed to use a
human motion database of 3D motion to solve lack of depth in-
formation of a monocular camera and occlusion problems. Even
a stereo camera system may suffer from depth insensitivity.2 Al-
though the authors assume a single onboard camera system com-
posed of a monocular camera, the approach can be extended to
an onboard stereo vision system. While recently 3D cameras be-
came popular, the proposed technology has benefits for recovering
3D information from 2D video images like film archives as well as
smart surveillance systems.

The main contribution of this paper is 3D whole body motion
recovery from an occluded monocular image sequence, which
includes not only self occlusion but also occlusion by obstacles.
The following paragraphs summarize the technical characteristics
of the proposed method.
(1) Coordinate transformation of the statistical database: In this

work, human motion patterns in the database are repre-
sented by a time sequence of joint variables and the 3D po-
sition/orientation of the basebody3 to allow for easy control of
articulated body motions. For the humanmotion database, the
hiddenMarkovmodel (HMM) is adopted [6,7] because it uses a
concise representation of spatiotemporal patterns and haswell
established computational methods. In order to recognize hu-
man motions (2D image observations from onboard camera)
without the need of a database with many different views, we
propose a method to transform the statistical database to an
appropriate coordinate. By the coordinate transformation, the
HMMs in joint space can be compared with 2D images from
any view point without the need of depth information.

(2) Concurrent motion recovery4 and motion recognition5: One can
find many publications of motion recovery [8–10] and motion
recognition [11–13] as independent problems. In contrast, our
algorithm emphasizes that recovery and motion recognition
are tightly coupled in a single framework, where recovery as-
sists action recognition and vice versa. The inference cost for
motion recognition in a next time step is significantly reduced
by closing the computational loop using recovered motion.
Computational concurrency of motion recovery and motion
recognition is similar to that of localization and mapping in
SLAM (Simultaneous Localization and Mapping) [14,15].

(3) Inference from optical flow of feature points: The appearance of
people in images varies due to different clothing and light-
ing conditions [16]. Often used image descriptors include sil-
houettes [8,17], edges [18,19], color [20], and motion [21,22].
A large computation for image processing of the 2D image
sequence would maximally extract information for 3D recog-
nition. Instead, this paper focuses on development of an in-
ference method from low level image features (e.g., optical
flow [23] of unlabeled features) without shape and struc-
ture information, inspired by human’s high perception ability
shown in the MLD experiments [1]. Note that the main objec-
tive of this paper lies on the inference mechanism from par-
tial monocular observations. In contrast, the reliable feature

1 The kinematic structure of human is invisible.
2 Even an onboard stereo cameramay not achieve complete 3D information of an

object far in the distance because of its fixed baseline.
3 To beprecise, ourmotiondatabase is represented in joint angles, joint velocities,

and baselink velocities.
4 Motion recovery denotes estimation of the sequence of joint angles and

basebody position/orientation from the 2D image sequence.
5 Motion recognition denotes the search for the closest HMM (e.g. walk, run,

jump, etc.) to the 2D image sequence.

selection and robust optical flow calculation from blurred im-
ages are not the focus of this research. Suchmethods for image
processing (optical flow estimation) can be found in [24,25].
Therefore, to separate these problems in our experiments, we
attach artificial markers to the subject as distinctive feature
points. Note also that themarkers are placed at arbitrary points
and neither labeled nor tracked, in contrast to optical markers
in conventional motion capturing. Thanks to these properties
of random placement of markers, and no need of tracking and
labeling, the synthetic observations can be easily replacedwith
the optical flows from real images. Therefore this allows that
the proposed inferencemethod can be directly integratedwith
2D optical flows processed from real images.

(4) Mimesis model: The basic framework used in this work is the
mimesis model [6], which was inspired by the mimesis the-
ory [26] and the mirror neurons [27] in cognitive and neuro
science. The mimesis model was proposed for imitation learn-
ing from human demonstrations, which consists of three com-
ponents: motion learning, recognition, and generation. This
model has been selected because the use of themimesis model
for 3D recovery of human motion patterns may be natural if
we recall the fact that our skill of human motion perception is
based on tightly connected cognitive activitywith learning and
reproduction.

The overall data flow is shown in Fig. 1, consisting of the learn-
ing procedure and the 3D whole body motion recovery from 2D
images. First, during the learning stage, a humanperformsmultiple
demonstrations for each motion primitive using conventional mo-
tion capturing system. The observed three dimensional Cartesian
marker position data [x, y, z] on the human body is converted to
joint angle data for a chosen kinematic model6 using inverse kine-
matics. The observations in the joint angle space are embodied into
the parameters of an HMM (Section 3). The transformation matrix
C
DT ∈ SE(3) between the camera coordinates and the demonstrator
baselink coordinates is found by applying the extended particle fil-
tering algorithm (Section 5.1). In Section 4, the coordinate transfor-
mation of the statistical database is described. Motion primitives λ
are converted from the demonstrator’s joint coordinates λθ into
the demonstrator’s Cartesian coordinates Dλx by forward kinemat-
ics, into the camera coordinates Cλx by a transformationmatrix C

DT ,
and into 2D image Cartesian coordinates Iλx by perspective pro-
jection. Finally, both proto-symbols Iλx and observations Iox are
represented in the 2D image Cartesian coordinates. When all the
markers are not visible, motion recognition from partial observa-
tions are carried out as described in Section 5.2. Section 6 explains
how to recover 3D whole body motion close to the 2D observed
motion.

Note that there are two stages of motion recovery in this work:
one for human baselink position and orientation C

DT (6DOF) and the
other for joint angles (50DOF). The particle filter represents a prob-
abilistic distribution of CDT and it influences coordinate transforma-
tion and thereafter motion recognition. Motion recognition results
affect the prediction of particles at the next step and recovery of
joint angles. In this regard, concurrent motion recovery and recog-
nition is implemented in this work.

An earlier version of this work was presented in [28]. This work
is extended by in depth explanations of methodology and new
experimental results. A method to reproduce a motion sequence
by manipulating proto-symbols in different coordinates is newly
proposed. While the previous work showed a recovery result of
only one occludedmotion sequence, this paper provides statistical
analysis under different conditions, such as multiple runs with

6 The kinematic model is chosen depends on an application: for example, a
humanoid robot kinematic model for robot imitation of human motions and a
human skeleton kinematic model for human motion reconstruction.



Download English Version:

https://daneshyari.com/en/article/10327022

Download Persian Version:

https://daneshyari.com/article/10327022

Daneshyari.com

https://daneshyari.com/en/article/10327022
https://daneshyari.com/article/10327022
https://daneshyari.com

