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a b s t r a c t

This paper addresses a bicriteria no-wait flow-shop scheduling problem with multiple robots transfer-
ring jobs between pairs of consecutive machines. The robots share an identical track positioned alongside
the machine transfer line. Each robot is assigned to a portion of the tract from which it performs job
transfers between all reachable machines. We assume that job processing times are both machine and
job independent, that jobs are not allowed to wait between two consecutive machines and that machine
idle times are not allowed. We define a combined robot selection and scheduling problem ðRSSPÞ for a
set of Q non-identical robots characterized by different costs and job transfer and empty movement
times. A solution to the RSSP problem is defined by (i) selecting a set of robots, (ii) assigning each robot
to a portion of the track, and (iii) scheduling the robot moves. We define a robot schedule as feasible if all
the jobs satisfy the no-wait condition and there are no machine idle times. The quality of the solutions
are measured by two criteria (performance measures): makespan and robot selection cost. We study four
different variations of the RSSP, one which is shown to be solvable in polynomial time while the other
three turn out to be NP-hard. For the NP-hard, we show that a pseudo-polynomial time algorithm and a
fully polynomial approximation scheme exists, and derive three important special cases which are
solvable in polynomial time. The RSSP has aspects of robot selection, machine-robot assignment and
robot movement scheduling. We believe this is the first time that this type of problem has been treated
in the literature, and addresses a very important problem in multiple robotic systems operation. Our
contribution lies in the formulation, methodology, algorithms for solution and complexity results which
jointly treats all aspects of the problem simultaneously without the need to defer to heuristic
decomposition methods.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Robotic flow-shop systems, which consist of a set of robots that
are responsible for transferring jobs between pairs of consecutive
machines, widely appear in automatic manufacturing systems.
Any savings in cost and time of these manufacturing transfer lines
enhances the competitiveness of world class companies. The
problem addressed in this paper has the objective of reduced
manufacturing time and costs. In solving such systems it is
common practice to assume that robot selection and assignment
decisions are considered to be at a higher hierarchal decision level
than the actual robot scheduling decisions. Although higher and
lower level decision-making processes are tightly connected,
traditional robot scheduling problems have been extensively
studied under the assumption that any higher level decision has

already been made; and that the set of robots and their assign-
ment to machines are predefined to the scheduler. This decoupling
of the higher and lower processes provides solutions whose
improvement can save companies substantial savings in time
and cost. In this paper we aim to provide an original methodology
that efficiently coordinates between these two very important and
closely related decisions by solving them simultaneously. Our
results should provide manufactures the opportunity to enhance
the performance of their productive endeavors.

This paper addresses a bicriteria no-wait flow-shop scheduling
problem with multiple robots transferring jobs between pairs of
consecutive machines. The problem is formally stated as follows: a
set of n independent jobs, J ¼ fJ1;…; Jng, is available for processing
at time zero. The jobs are to be processed in a fixed order on a
set of m machines, M¼ fM1;…;Mmg in a flow-shop scheduling
system ðn≥m�1Þ. In such a system, each job Jj consists of m
operations Oj ¼ fO1j;…;Omjg which must be processed in the order
O1j- O2j-⋯-Omj. The operation Oij must be processed on Mi

without preemption for pij≥0 time units. It is assumed that the
processing times are both job- and machine-independent, i.e., pij ¼ p
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ði¼ 1;…;m; j¼ 1;…;nÞ. Each machine can process only one job at a
time. There are Q types of robots where the cost of a single robot of
type q is δq ðq¼ 1;…;Q Þ. Let tijq be the transportation time required
for a type q robot to transfer Jj from Mi to Mi+1. It is assumed that the
times are job-independent such that tijq ¼ tiq. Empty return times teiq
are also defined when a type q robot moves empty without carrying
a job from Mi+1 to Mi. The empty return times are assumed to be
additive, i.e., the time for the robot to travel between two distinct
machines is the sum of the empty traveling times between all
intermediate machines. For the case of a single robot type we omit
the q index such that, for example, ti is the transportation time
required to transfer any job from Mi to Mi+1. It is also assumed that
there is an automatic mechanism beside each Mi, which allows each
robot to perform download/upload operations in a negligible time
without violating the no-wait restrictions.

Physically robots are constrained to move on an identical track,
positioned alongside a machine transfer line. Due to the limited
working space envelopes of the robots and to avoid collisions, each
robot is assigned to a portions of the track and performs job
transfers between all reachable machines from its assigned por-
tion of the track. Let k be the number of robots serving the system
and let Mr ¼ fMlr ;…;Mlrþ1

g be a subset of consecutive machines
assigned to Rr ðr¼ 1;…; kÞ with l1 ¼def1 and lkþ1 ¼defm. Rr is respon-
sible for transferring jobs between successive machines in Mr .
Note, Mr∩Mrþ1 ¼Mlrþ1

and Rr is responsible for transfers to Mlrþ1

while Rr+1 is responsible for transfers from Mlrþ1
for r¼ 1;…; k�1.

Fig. 1 below illustrates the flow-shop system and its machine
partition based on k robot working space envelopes.

The robot selection and scheduling problem (referred to as
RSSP in short) includes two parts. The first is the robot selection
and assignment, and the second is the robot scheduling. The robot
selection and assignment part is composed of a selection of an
ordered list of k robots {R1, R2,...,Rk} (where k itself is a decision
variable) and from the assignment of a subset of machines,
Mr¼{Mlr,...Mlr+1}, to each robot Rr for r=1,...,k such that
M1∪M2∪...∪Mk¼{M1,...,Mm}. The robots are selected from the
set of Q robot types and more than a single robot of the same
type may be selected. The scheduling part defines a set of moves
for each robot which indicates the sequence in which the robot
serves the machines. Similar to Che and Chu [12], a solution to the
scheduling part is feasible if it obeys the following two restrictions:

Restriction 1: (no-wait restriction): jobs are not allowed to wait
between two consecutive machines, that is, once a job has finished
its processing on Mi it must be immediately transferred to Mi+1

ði¼ 1;…;m�1Þ.
Restriction 2: (no machine idle time): once a machine has

started work, it must process the entire set of n jobs consecutively.
The quality of a feasible solution to RSSP is evaluated by two

different performance measures. The first is the makespan criter-
ion denoted by Cmax ¼ Cn, and defined by the completion time of
the last job ðJnÞ on the last machine ðMmÞ. The second is the total
cost of the assigned robots defined by

TRC ¼ ∑
k

r ¼ 1
δfrg

where frg is the type of robot Rr.
In any multicriteria problem it is important to point out the

nature of the optimization being performed, as different criteria

are often conflicting. This is reflected by the following four
variations of the RSSP:

1. RSSP1: find a feasible solution which minimizes the total
integrated cost, i.e., Cmax þ TRC.

2. RSSP2: find a feasible solution which minimizes Cmax subject
to TRC≤TRC , where TRC is a given upper bound on the total
robot assignment cost.

3. RSSP3: find a feasible solution which minimizes TRC subject to
Cmax≤Cmax, where Cmax is a given upper bound on the
makespan value.

4. RSSP4: identify a Pareto-optimal solution for each Pareto-
optimal point, where a feasible solution S is called Pareto-
optimal (non-dominated or efficient) with respect to criteria
Cmax and TRC; if there does not exist another feasible solution S0

such that CmaxðS′Þ≤CmaxðSÞ and TRCðS′Þ≤TRCðSÞ, with at least
one of these inequalities being strict.

Note that solving problem RSSP4 also solves problems
RSSP1�RSSP3 as a by-product. Note also that the decision
version (DV) of problem RSSP2 is identical to that of problem
RSSP3, and is defined below:

Definition 1. DV: given parameters Cmax and TRC , is there a
solution for the RSSP with CmaxðSÞ≤Cmax and TRCðSÞ≤TRC?

The fact that both the RSSP2 and the RSSP3 problems share
the same decision version implies that either both or none of them
is NP-hard.

Robotic flow-shop systems are very complicated and therefore
researchers applied various simplified assumptions to provide an
analytical analysis. The most common assumption is that there
is a single robot that serves the entire production line (see e.g.,
[52,49,34,30,5,5,22,41]). Among the other commonly used assumptions
are: (a) the number of machines is limited to two (see e.g., [54,15,
28,5,22]), (b) empty return times equal zero (see e.g., [29,22,41]), (c)
loading and unloading times are zero (see e.g., [29,5,6]), (d) job proces-
sing times are job-independent (see e.g., [35,25,8,9,14]), (e) the produc-
tion is cyclic (see e.g., [35,25,5,8,9,14]), and (f) there is sufficient number
of robots with no technological constraints (see e.g., [54,15,28]).

A good example where a wide range of assumptions used is the
paper by Hurink and Knust [22], where it is assumed that only a
single robot serves the entire set of machines and that there is an
unlimited buffer between pair of consecutive machines. Moreover,
in several cases they even consider more restricted models of two
machines, equal transportation time, zero empty return times, and
equal and even unit processing times. We note that the robotic
flow-shop scheduling problem is so complicated that even under
these very restrictive assumptions Hurink and Knust [22] showed
that the problem remains strongly NP-hard in most cases. More-
over, they were only able to present polynomial time algorithms
for special cases where all processing times are equal.

The model presented above (in the Introduction section)
includes some new features that have not (or rarely) been
discussed at all in the literature. Among those features are several
robot types, an arbitrary number of machines, a possibility to
control the number of robots assigned to the production line and
their assignment to machine sets, and a bicriteria objective
function. On the other hand, to be able to provide a mathematical
based analysis the following assumptions are used: (i) there are
no-wait and no-idle restrictions (see Restrictions 1 and 2),
(ii) transportation times are job-independent, and (iii) job proces-
sing times are all equal. The no-wait and no-idle restrictions are
well justified by many real-life applications (see e.g., [12,20,51,19])
and are widely used in the flow-shop scheduling literature
([1,24,47,33,35,5,6,8,9,37,38,3,36] and among many others). EvenFig. 1. An illustration of the robot job-machine scheduling system.
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