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a b s t r a c t

In this paper, a methodology is presented to generate an optimized sensor deployment deciding sensor

types, numbers, and locations to accurately monitor fault signatures in manufacturing systems. Sensor

deployment to robustly monitor operation parameters is the corner stone for diagnosing manufacturing

systems. However, current literature lacks investigation in methodologies that handle heterogeneity

among sensor properties and consider multiple-objective optimization involved in the sensor deploy-

ment. We propose a quantitative fuzzy graph based approach to model the cause–effect relationship

between system faults and sensor measurements; analytic hierarchy process (AHP) was used to

aggregate the heterogeneous properties of the sensor–fault relationship into single edge values in fuzzy

graph, thus quantitatively determining the sensor’s detectability to fault. Finally sensor–fault matching

algorithms were proposed to minimize fault unobservability and cost for the whole system, under the

constraints of detectability and limited resources, thus achieving optimum sensor placement. The

performance of the proposed strategy was tested and validated on different manufacturing systems

(continuous or discrete); various issues discussed in the methodology were demonstrated in the case

studies. In the continuous manufacturing case study, the results illustrated that compared with signed

directed graph (SDG), the proposed fuzzy graph based methodology can greatly enhance the

detectability to faults (from SDG’s 0.699 to fuzzy graph’s 0.772). In the discrete manufacturing case

study, results from different optimization approaches were compared and discussed; the detectability

of sensors to faults also increased from SDG’s 0.61 to fuzzy graph’s 0.65. The two case study results

show that the proposed approach overcame the qualitative approach such as signed directed graph’s

deficiency on handling sensor heterogeneity and multiple objectives; the proposed approach is

systematic and robust; it can be integrated into diagnosis architecture to detect faults in other complex

systems.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Fault diagnosis is the action of identifying whether a system is
deviating from the desired behavior, and determining potential
root causes to abnormal behaviors [1]. To maintain the safety and
reliability of a manufacturing system, it is essential to diagnose
faults efficiently and accurately upon their occurrence. The under-
lying reasons of faults can be caused by design errors, manufac-
turing defects, improper application of parts, or users’ programs
that do not follow the protocols [1]. In a typical fault diagnosis
process, the first step is to use the actual maintenance records to
identify components that are critical to system’s reliability, safety,

repair cost, and their impacts on the system’s mission. The second
step consists of selecting and locating sensors based on the results of
the first step to monitor physical models through sensing signal
signatures to faults. Finally, transitional information from the sensor
data is processed to identify the root causes of faulty states.

Sensors and sensing technologies constitute the fundamental
basis for fault diagnosis in that performance of a diagnosis system
critically depends on accuracy and efficiency of sensor measure-
ments on faulty symptoms. Insufficient or inaccurate measurements
resulting from improper sensor deployment can significantly dete-
riorate fault diagnosis performance. Although redundantly sensing
every physical parameter of a system can reduce information loss,
the redundant sensor network may be cursed with overload on data
analysis as well as cost. This is especially critical in remote diagnosis
applications [2] or wireless sensor networks [3,4] since it involves
transmitting huge amounts of data from remote sites to fusion
center for data analysis. Due to limited communication bandwidth,
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transferring large quantities of data to the remote fusion center is a
prominent issue. Additionally, as the sensor number increases, the
data analysis complexity increases exponentially, leading to tre-
mendous difficulty in data analysis.

Consequently, appropriate sensor deployment is crucial for an
effective fault diagnosis system design. It determines the types,
numbers and locations of sensors for diagnosis purpose. A good
sensor deployment strategy can result in a configuration with the
optimal performance while satisfying pre-specified resource con-
straint criteria. Currently, most sensor deployment strategies for
diagnosis are mainly based on ad hoc or heuristic methods. In this
sense, the sensor deployment strategy is mostly an artistic proce-
dure, instead of a scientific technique [5]. Although several analy-
tical techniques on sensor deployment optimization have been
suggested with qualitative [8–10,24] or quantitative methods
[6,16–17,18,19–20,26–34], two typical issues in sensor deployment
remain intact: (1) Heterogeneous properties of sensors in the
diagnosis process. In a typical fault diagnosis system, it usually
deploys sensors which generally have different sensing character-
istics including uncertainty, accuracy, resolution and statistical
property on physical signal data. Consequently, it is required that
different types of control and process variables that are hetero-
geneous in nature be captured and processed accordingly. Never-
theless, how to systematically select crucial and optimum sensor
deployment for heterogeneous sensory system poses a unique
problem in the manufacturing system, which has never been
reported [7]. (2) Multiple-objective optimization. Sensor deploy-
ment for fault diagnosis is a delicate work which tackles multiple
objectives including observability, reliability, accuracy and efficiency
under the constraints of cost, resources and environment etc. Most
of the researchers attack this problem targeting single objective such
as either cost or reliability. A comprehensive method that considers
the multiple-objective decision making involved in the sensor
deployment is yet to be created. As such, these two issues call for
a systematical procedure to design a cost-effective and reliable
sensor deployment strategy. When being applied in a manufacturing
system, it should consider multiple decision attributes and hetero-
geneous types of sensors thus guaranteeing the performance of
monitoring on manufacturing system.

To address aforementioned research needs, we developed a
systematic methodology based on quantitative fuzzy graph. In our
approach, failure mode effect analysis (FMEA) on manufacturing
system was firstly conducted to obtain the fault information such
as fault effect severity, occurrence rate and detecting rate about
the system. Then quantitative fuzzy graph was used to model
cause–effect relationship for sensor deployment. The nodes of the
graph are constituted of fault nodes and sensor nodes. The fault
nodes contain fault information from FMEA, while sensor nodes
contain sensor properties such as reliability, sensitivity, and
accuracy etc. The edges between sensor nodes and fault nodes
represent the sensor detectability to certain faults. To simplify the
model it is required to aggregate all factors for edge and node
elements into a single value that represents sensors’ detectability
to certain fault. Here analytic hierarchy process (AHP) was
applied to aggregate heterogeneous sensor properties involved
in sensor network deployment into single edge values. With node
and edge values, mixed integer linear programming and greedy
algorithm were respectively conducted to optimally assign the
sensors to fault nodes thus optimizing the sensor deployment.
Two case studies on (1) a five tank system and (2) a dual robot
assembly arm showed that the proposed methodology can be
integrated into diagnosis/prognosis system architecture to detect
abnormality and faults.

The rest of this paper is organized as follows: Section 2 discusses
the state of the art on sensor deployment for diagnosing purpose; it
also summarizes the existing gap identified in literature and

formulates the problem to be addressed. Section 3 provides details
of the proposed sensor deployment method which includes the
fuzzy graph model, AHP method and optimization. Section 4
illustrates detailed case studies; the proposed sensor deployment
strategy was applied to continuous and discrete manufacturing
systems. Section 5 highlights the findings of this research and
discusses the future work.

2. Literature review

Sensor deployment problems usually involve four sequential
phases: (1) model the cause–effect relationship of fault variations
on sensor measurements; (2) set up the objective functions for
sensor deployment based on the cause–effect relationship; (3)
find approaches to optimize the sensor deployment strategy; and
(4) evaluate the optimized strategy. Among them, step (1) and (3)
are the most important. Thus we also searched literature on
aspects of: (1) modeling cause–effect relationship between sys-
tem faults and sensor measurements, and (2) optimizing the
cause–effect model. The references were summarized in Table 1.

Mandroli et al. [7] presented a comprehensive survey of
inspection strategy and sensor distribution in discrete-part man-
ufacturing processes. In his survey, he noted that diagnosis-
oriented sensor distribution strategy is a relatively new problem
with lots of research opportunities. Especially, no report has been
found on how to deploy the heterogeneous sensors.

Graph theory has been applied on optimal sensor deployment
strategies from qualitative [8–10,14–15] or quantitative [18–19]
perspectives for sensor deployment’s effects on assessing complex
system status. Ali et al. used the spanning tree to model and
optimize the sensor deployment for fault observability and detec-
tion reliability [8]. They defined the sensor deployment’s process
reliability as the smallest reliability among all of the process
variables. Mass-flow and energy distribution balances in chemical
plants are the basis for generating the spanning tree. Later this
spanning tree procedure was extended for optimal design of a
redundant sensor network for linear processes [9], as well as a
nonredundant sensor network for bilinear processes [10]. Raghuraj
and Bhushan et al. had qualitatively investigated the sensor deploy-
ment problem with directed graph (DG) and/or signed directed
graph (SDG) [14,15] for the chemical plant. The only difference
between DG and SDG is that signs are placed on the arcs of DG to get
an SDG. However, the structures are exactly the same. The authors
assumed that all faults had to be defined clearly along with their
tolerances using a priori knowledge; then DG/SDG can be used to

Table 1
Literature summary in sensor deployment.

Modeling Classification Reference
Qualitative Spanning tree [8,9,10]

Direct graph [14,15]

Signed direct graph [15]

Petri net [23]

Finite state automaton [24,25]

Quantitative Quantitative direct graph [18,19]

Mathematic programming [16,23]

Fault signature matrix [12,13]

Optimization Classification Reference
Heuristic search Simulated annealing [22,33]

Tabu search [34]

Genetic algorithms [20,21]

Mathematic programming Integer programming [16,23]

Dynamic programming [26,27]

Nonlinear programming [11]
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