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We solve a problem of Littlewood: there exist seven infinite circular cylinders of unit 
radius which mutually touch each other. In fact, we exhibit two such sets of cylinders. 
Our approach is algebraic and uses symbolic and numerical computational techniques. 
We consider a system of polynomial equations describing the position of the axes of the 
cylinders in the 3 dimensional space. To have the same number of equations (namely 20) 
as the number of variables, the angle of the first two cylinders is fixed to 90 degrees, 
and a small family of direction vectors is left out of consideration. Homotopy continuation 
method has been applied to solve the system. The number of paths is about 121 billion, 
it is hopeless to follow them all. However, after checking 80 million paths, two solutions 
are found. Their validity, i.e., the existence of exact real solutions close to the approximate 
solutions at hand, was verified with the alphaCertified method as well as by the interval 
Krawczyk method.

© 2014 Elsevier B.V. All rights reserved.

1. Littlewood’s problem on seven touching infinite cylinders

John Edensor Littlewood ([11], Problem 7 on page 20) proposed that

“Is it possible in 3-space for seven infinite circular cylinders of unit radius each to touch all the others? Seven is the number suggested 
by constants.”

Two cylinders touch each other if their intersection is either a point or a line. Ogilvy’s book [12] also includes Littlewood’s 
problem.

Finite versions of the problem are discussed as puzzles by Gardner and they are well-known as 6 touching cigarettes 
[5, Fig. 54 on page 115] and 7 touching cigarettes [5, Fig. 55 on page 115]. The latter works for a ratio of length/diameter 

* Corresponding author.
E-mail addresses: bozoki.sandor@sztaki.mta.hu (S. Bozóki), leetsung@math.nsysu.edu.tw (T.-L. Lee), ronyai.lajos@sztaki.mta.hu (L. Rónyai).
URLs: http://www.sztaki.mta.hu/~bozoki (S. Bozóki), http://www.math.nsysu.edu.tw/~leetsung (T.-L. Lee), http://www.sztaki.mta.hu/~ronyai (L. Rónyai).

1 Research was supported in part by OTKA grant K77420.
2 Research was supported in part by NSC grant 102-2115-M-110-009.
3 Research was supported in part by OTKA grants K77476 and NK105645.

http://dx.doi.org/10.1016/j.comgeo.2014.08.007
0925-7721/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.comgeo.2014.08.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
mailto:bozoki.sandor@sztaki.mta.hu
mailto:leetsung@math.nsysu.edu.tw
mailto:ronyai.lajos@sztaki.mta.hu
http://www.sztaki.mta.hu/~bozoki
http://www.math.nsysu.edu.tw/~leetsung
http://www.sztaki.mta.hu/~ronyai
http://dx.doi.org/10.1016/j.comgeo.2014.08.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comgeo.2014.08.007&domain=pdf


88 S. Bozóki et al. / Computational Geometry 48 (2015) 87–93

greater than 7
√

3/2. However, as it is noted by Bezdek [2], it is still open whether it is possible to find 8 or more touching 
finite identical cylinders. An arrangement of 5 touching coins (with a small ratio of length/diameter) is also known [5, Fig. 49 
on page 110] and this fact suggests that intermediate ratios of length/diameter could also be analyzed.

Bezdek [2] showed that 24 is an upper bound for the number of mutually touching congruent infinite cylinders. Ambrus 
and Bezdek [1] investigated the proposal of Kuperberg from the early 1990’s that contained 8 congruent infinite cylinders. 
It is shown that they do not mutually touch each other, see [1, Theorem 1 and Fig. 1 on page 1804] for details. Brass, Moser 
and Pach discuss an arrangement of 6 mutually touching infinite cylinders [3, page 98]. In the paper this lower bound is 
improved to 7.

Hereafter, it is assumed that cylinders are infinite and congruent, their radius is set to 1. Two cylinders of unit radius 
touch each other if and only if the distance of their axes is 2. Let Ci and �i denote the i-th cylinder and its axis, respectively. 
In the paper, i = 1, 2, . . . , 7. The case of parallel cylinders (lines) is excluded from our analysis. It is left to the reader to 
show that if two cylinders are parallel, then the maximum number of mutually touching cylinders is four.

We intend to apply the well-known formula for the distance of two lines in R3. Let

�i(s) = Pi + s wi

be a parametric representation of line �i for i = 1, . . . , 7. Here Pi ∈R
3 is a point of �i , wi ∈R

3 is a direction vector and s is 
a real parameter. If lines �i and � j are skew, then their distance can be obtained as

d(�i, � j) = |(−−−−→PiP j) · (wi × w j)|
‖wi × w j‖ , (1)

where · denotes dot product, × denotes cross product and ‖ ‖ denotes the Euclidean norm [6,20]. Since the cylinders have 
unit radius, d(�i, � j) = 2 for all i, j = 1, 2, . . . , 7, i �= j, we can write Eq. (1) as

∣∣(−−−−→PiP j) · (wi × w j)
∣∣2 − 4‖wi × w j‖2 = 0. (2)

In this form we avoid taking square roots. Let us introduce coordinates:

Pi = (xi, yi, zi), wi = (ti, ui, vi).

Then we have
−−−−→
PiP j = (x j − xi, y j − yi, z j − zi), (3)

wi × w j = (ui v j − viu j, vit j − ti v j, tiu j − uit j). (4)

Now we substitute (3)–(4) into (2), and by using the well-known determinantal form of the triple product, we obtain the 
equation

det

⎡
⎣

x j − xi y j − yi z j − zi
ti ui vi
t j u j v j

⎤
⎦

2

− 4
(
(ui v j − viu j)

2 + (vit j − ti v j)
2 + (tiu j − uit j)

2) = 0. (5)

This is a polynomial equation of degree 6 in 12 variables. The polynomial on the left is a linear combination of 84 mono-
mials.

We call a line horizontal if it is parallel to the plane z = 0. Any arrangement of seven lines can be translated and rotated 
to a position in which one of the lines (�1) is horizontal, with direction vector w1 = (1, 0, 0), and it goes through the point 
P1(0, 0, −1). It can also be assumed that the touching point of cylinders C1 and C2 is (0, 0, 0), that is, �2 goes through 
the point P2(0, 0, 1). The direction of (�2) is the only degree of freedom when the first two lines are considered. We shall 
assume, and this is explained later, that (�2) will be chosen to be orthogonal to the first line. We have so far

x1 = 0, y1 = 0, z1 = −1, t1 = 1, u1 = 0, v1 = 0; (6)

x2 = 0, y2 = 0, z2 = 1, t2 = 0, u2 = 1, v2 = 0. (7)

We can make some further simplifications. We may assume without loss of generality that �i (i = 3, . . . , 7) is not horizontal 
(otherwise it would be parallel to �1 or �2), consequently, it goes through the plane z = k for any k ∈ R. Let us choose k = 0
and set

zi = 0 for i = 3, . . . ,7. (8)

Finally, the normalization of the direction vector of line �i is chosen to be ti + ui + vi = 1 for i = 3, . . . , 7. This is equivalent 
to

vi = 1 − ti − ui, i = 3, . . . ,7. (9)
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