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A path or a polygonal domain is C-oriented if the orientations of its edges belong to a set
of C given orientations; this is a generalization of the notable rectilinear case (C = 2). We
study exact and approximation algorithms for minimum-link C-oriented paths and paths
with unrestricted orientations, both in C-oriented and in general domains.
Our two main algorithms are as follows:

A subquadratic-time algorithm with a non-trivial approximation guarantee for general
(unrestricted-orientation) minimum-link paths in general domains.

An algorithm to find a minimum-link C-oriented path in a C-oriented domain. Our
algorithm is simpler and more time-space efficient than the prior algorithm.

We also obtain several related results:

• 3SUM-hardness of determining the link distance with unrestricted orientations (even
in a rectilinear domain).

• An optimal algorithm for finding a minimum-link rectilinear path in a rectilinear
domain. The algorithm and its analysis are simpler than the existing ones.

• An extension of our methods to find a C-oriented minimum-link path in a general
(not necessarily C-oriented) domain.

• A more efficient algorithm to compute a 2-approximate C-oriented minimum-link
path.

• A notion of “robust” paths. We show how minimum-link C-oriented paths approximate
the robust paths with unrestricted orientations to within an additive error of 1.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Minimum-link problems arise in motion planning with turn costs, in line simplification, guarding applications, VLSI,
wireless communication, and other areas. An instance of the problem is specified by an n-vertex polygonal domain P with
h holes, and two points s, t ∈ P ; the goal is to find an s–t path with the fewest edges (links). In the query version of the
problem, the goal is to build a data structure (link distance map) to efficiently answer link distance queries with s fixed.

The algorithm of Mitchell, Rote and Woeginger [25] computes a minimum-link path in O (n2α2(n) log n) time, where α
is the inverse Ackermann function. It was believed that a faster algorithm is possible (e.g., in [5, p. 263] the result of [25]
is called “suboptimal”). Nevertheless, the only previously known lower bound, also due to [25], was Ω(n log n). The same
bounds for the rectilinear case are given in [5,22]. Also, no approximation algorithm was previously known.
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Fig. 1. A C -oriented domain and a minimum-link C -oriented path in it.

In this paper (Section 2) we give a subquadratic-time O (
√

h )-approximation algorithm for the minimum-link path prob-
lem. We also observe (Theorem 2.1) that finding the exact solution is 3SUM-hard; this answers a question from the survey
[26] and Problem 22 in The Open Problems Project [7].

Our 3SUM-hardness proof suggests that the problem’s complexity stems from allowing the path edges to go in arbitrary
directions. This—along with practical considerations—motivates the restricted, C-oriented setting [1,11–13,28,32,37] (Fig. 1)
in which orientations of path edges come from a fixed set C of directions. (Abusing notation, we use C to denote also
the cardinality of the set C .) Adegeest, Overmars and Snoyeink [1] presented two algorithms for finding minimum-link
C-oriented paths in C-oriented domains—one running in O (C2n log n) time and space, the other in O (C2n log2 n) time and
O (C2n) space.

In Section 3 we present an O (C2n log n)-time O (Cn)-space algorithm, slightly improving on both algorithms from [1].1 As
a by-product, in Section 3.1, we reestablish the optimal time and space bounds claimed in [39] for computing a minimum-
link rectilinear path amid rectilinear obstacles. Unlike the earlier papers on the rectilinear case, we use only elementary data
structures, which simplifies the algorithm and its analysis. We also show how to find a C-oriented path in a general domain
(Section 3.3.1), give an O (Cn log n)-time O (n)-space 2-approximation algorithm for C-oriented paths (Section 3), and inves-
tigate in what sense C-oriented paths can approximate minimum-link paths with unrestricted orientation (Section 3.3.3).

All of our algorithms not only find minimum-link paths but also build, within the same time and space bounds, the
corresponding link distance maps—exact or approximate. For instance, using our algorithms, one can construct approximate
(additive or multiplicative) maps for general minimum-link paths in general domains in subquadratic time and linear space.
This is in contrast with the exact link distance maps, which may have quartic complexity [35].

2. Paths with unrestricted orientations

The 3SUM-hardness of finding a minimum-link path can be seen easily, as we now observe. Start from an instance of
the 3SUM-hard problem GeomBase considered in [8]: Given a set S of points lying on 3 parallel lines l1, l2, l3, do there exist
3 points from S lying on a line l /∈ {l1, l2, l3}? Construct an instance of the minimum-link path problem as follows (Fig. 2,
left): l1, l2, l3 become obstacles, and each point p ∈ S is a gap punched in the obstacle. The s–t link distance is 3 if and only
if there exist 3 collinear gaps pi , i = 1,2,3, such that pi ∈ li .

We thus obtain:

Theorem 2.1. Determining the link distance, for paths with unrestricted orientations, between two points of a polygonal domain with
holes is 3SUM-hard. In particular, it is 3SUM-hard to decide if there exists a 3-link path between two points in a rectilinear domain.

Remark 1. One can decide if the link distance between points s and t is 1 in time O (n) (just test the segment st for
intersection with each edge of the domain). One can test if the s–t link distance is � 2 in time O (n log n) (just compute the
visibility polygons with respect to s and t , in time O (n log n), and test them for intersection, in time O (n)). One can test if
the s–t link distance is � 3 in time O (n2) (assuming the visibility polygons with respect to s and t are disjoint, construct
the visibility graph within the domain obtained by subtracting the two visibility polygons and check if there exists an
(extended) visibility graph edge with endpoints on each of the two visibility polygons).

Several corollaries are immediate: finding a 4/3 − ε multiplicative approximation is 3SUM-hard; there is little hope to
design an output-sensitive algorithm that would spend o(n2) time per link in the optimal path; computing an additive-1
approximation is 3SUM-hard; obstacles having few orientations of edges do not make the problem simpler, etc.

The proof can be strengthened to show that obtaining an O (1) additive approximation is 3SUM-hard, and that obtaining
a (2 − ε) multiplicative approximation is equally hard. To see this, let k = O (1) be an arbitrary integer. Take an instance of
GeomBase of size n/k, and make k copies of it. Place the copies in a k-channel (“zig-zag”) corridor with k channels, with
one copy per channel (Fig. 2, right). There is a path utilizing a single link per channel (i.e., one link per copy of the instance)
if and only if the GeomBase instance is feasible, otherwise 2 links per copy are needed. That is, if GeomBase is feasible, the
s–t path will have 2 + k links, otherwise it will have 2 + 2k links. Distinguishing between the two cases is at least as hard
as solving the GeomBase instance of size Θ(n/k) = Θ(n).

Hence, we have:

1 The algorithm was also presented at WADS 2011 [31].
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