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This paper presents a method for designing solid shapes containing slopes where
orientation appears opposite to the actual orientation when observed from a unique
vantage viewpoint. The resulting solids generate a new type of visual illusion, which we
call “impossible motion”, in which balls placed on the slopes appear to roll uphill thereby
defying the law of gravity. This is possible because a single retinal image lacks depth
information and human visual perception tries to interpret images as the most familiar
shape even though there are infinitely many possible interpretations. We specify the set
of all possible solids represented by a single picture as the solution set of a system of
equations and inequalities, and then relax the constraints in such a way that the antigravity
slopes can be reconstructed. We present this design procedure with examples.
© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

This paper presents a computational approach to design a new visual illusion. Visual illusion is a perceptual behavior
where what we “see” differs from the physical reality. This phenomenon is important in vision science because it helps us
to understand the nature of human perception [7,8]. Numerous traditional visual illusions are known, most of which are
generated by two-dimensional pictures and their motions [5,15].

However, very few visual illusions are known that make use of three-dimensional solid shapes. An early example was
the Ames room, where a person looks taller when he moves from one corner of the room to another [3]. Other examples
include impossible solids produced by a hidden-gap trick [1], and those without hidden gaps [13]. The latter class was
extended to include a new type of illusion called “impossible motion” [14].

The design of illusions using solids requires mathematics, because this process can be counterintuitive.
This paper concentrates on one class of such solids called “antigravity slopes”, in which balls appear to roll uphill against

the law of gravity and produce appearances of an “impossible motion”.
In Section 2, we briefly review picture interpretation theory, which specifies the set of all possible solids represented

by a picture, and in Section 3 we show that antigravity slopes cannot be constructed using that formulation. In Section 4,
we remove some of the constraints by changing structures in the hidden part so that design of antigravity slopes becomes
possible. We show some examples in Section 5, and provide concluding remarks in Section 6.

2. Reconstruction of a solid from a picture

Our goal is to construct solids that generate a visual illusion. As a tool to achieve this goal, let us review picture inter-
pretation theory, by which we can specify all solids represented by a given picture.
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Fig. 1. Solid and its central projection.

Fig. 2. ON, NEARER and FARTHER predicates between faces and vertices.

For two points p and q, let pq denote the closed line segment connecting p and q. Let (p1, p2, . . . , pn) be a se-
quence of mutually distinct points in two-dimensional space. We assume that the line segments p1 p2, p2 p3, . . . , pn−1 pn
and pn p1 do not intersect except at their terminal points. Then, the region bounded by the cyclic sequence of these line
segments is called a polygon (not necessarily convex). The points p1, p2, . . . , pn are called vertices and the line segments
p1 p2, p2 p3, . . . , pn−1 pn and pn p1 are called edges of the polygon. Intuitively a polygon is a piece of hard thin flat plate
whose boundary is composed of line segments. We place a finite number of polygons in three space, and thus construct a
solid object. Formally we define a solid object as a collection of a finite number of polygons placed in three space. A solid
object is also called a solid for short. The polygons that constitute a solid are called faces.

For example, the solid P in Fig. 1 is a hexahedron. This object can be considered a solid composed of the six boundary
faces; we do not care whether the inside is occupied with material or empty.

Our goal is to construct an antigravity slope, which is a solid object typically composed of a base plate, slopes, and
supporting columns. A slope is composed of a slide and two side walls; they can all be considered as polygons. A support
column is a polyhedron, but we consider it as a collection of surface polygons. As shown in Fig. 1, let P be a solid object
fixed to three space with the (x, y, z) Cartesian coordinate system, and D be its projection on the plane z = 1 with respect
to the center of projection at the origin O. This means that we see the object from the viewpoint at the origin, and get its
image on the plane z = 1. We assume that all the edges of P are drawn in D , and hence D is called the line drawing of P .
Let f be a face of a solid. We denote by [ f ] the image of f projected on the plane z = 1. Similarly for a vertex v of a solid,
we denote by [v] the image of v on the plane z = 1.

If P is given, D is uniquely determined. On the other hand, if D is given, an associated P is not unique in general. If D
represents a solid object correctly, there are infinitely many solids that generate D . If D is incorrect in the sense that it does
not represent a solid object, there is no corresponding P . So we consider how to specify the set of all solid objects that can
generate D .

Suppose that we are provided with D and the relative relations among the vertices and the faces of the solid object. Let
V = {v1, v2, . . . , vn} and F = { f1, f2, . . . , fm} be the set of vertices and of faces, respectively, of a solid in three space. Let
ON(vi, f j) represent the predicate stating that the vertex vi is on the face f j . Similarly let NEARER(vi, f j) represent “vi is
nearer than the plane containing f j”, and FARTHER(vi, f j) represent “vi is farther than the plane containing f j ”, where
“near” and “far” are meant according to the distance from the viewpoint at the origin to each part of the object.

For example, consider the line drawing in Fig. 2. Let us concentrate on the three vertices vi , v j , vk and face f� in this
figure. Since vertex vi is on face f� , we get

ON(vi, f�).

The edge labeled + in Fig. 2 represents a ridge of a mountain, and hence, if we extend the plane f� , it passes between the
viewpoint and the vertex v j . Hence we get

FARTHER(v j, f�).

The edge labeled −, on the other hand, forms the bottom of a valley, and hence the face f� when extended goes beyond vk .
Hence we get

NEARER(vk, f�).
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