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A constant-work-space algorithm has read-only access to an input array and may use
only O (1) additional words of O (log n) bits, where n is the input size. We show how to
triangulate a plane straight-line graph with n vertices in O (n2) time and constant work-
space. We also consider the problem of preprocessing a simple polygon P for shortest path
queries, where P is given by the ordered sequence of its n vertices. For this, we relax the
space constraint to allow s words of work-space. After quadratic preprocessing, the shortest
path between any two points inside P can be found in O (n2/s) time.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In algorithm development and computer technology, we observe two opposing trends: on the one hand, there are vast
amounts of computational resources at our fingertips. Alas, this often leads to bloated software that is written without
regard to resources and efficiency. On the other hand, we see a proliferation of specialized tiny devices that have a limited
supply of memory or power. Software that is oblivious to space resources is not suitable for such a setting. Moreover, even
if a small device features a fairly large memory, it may still be preferable to limit the number of write operations. For one,
writing to flash memory is slow and costly, and it also reduces the lifetime of the memory. Furthermore, if the input is
stored on a removable medium, write-access may be limited for technical or security reasons.

With this situation in mind, it makes sense to focus on algorithms that need only a limited amount of work-space, while
the input resides in read-only memory. In this paper, we will develop such algorithms for geometric problems in planar
polygons or, more generally, plane straight-line graphs (PSLGs).

✩ This work was initiated at the Dagstuhl Workshop on Memory-Constrained Algorithms and Applications, November 21–23, 2011. We are deeply grateful
to the organizers as well as the participants of the workshop for helpful discussions during the meeting. A preliminary version was presented as T. Asano,
K. Buchin, M. Buchin, M. Korman, W. Mulzer, G. Rote, A. Schulz, Memory-constrained algorithms for simple polygons, in: Abstracts of the 28th EWCG, 2012,
pp. 49–52.
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In particular, we consider two fundamental problems from computational geometry [6]: first, we are given a PSLG G =
(V , E) with n vertices, and we would like to find a triangulation for G , i.e., a PSLG with vertex set V that contains all the
edges in E and to which no edge can be added without violating planarity. We show how to find such a triangulation in
O (n2) time with O (1) words of work-space (Section 4). Since our model does not allow storing the output, our algorithm
outputs the triangles of the triangulation one after another.

Then, we apply this result in order to construct a memory-adjustable data structure for shortest path queries in simple
polygons (Section 5). Given a simple polygon P with n vertices and a parameter s ∈ {1, . . . ,n}, we build a data structure for
P that requires O (s) words of storage and that lets us output the edges of a shortest path between any two points inside
P in O (n2/s) time using O (s) work-space. The preprocessing time is O (n2).

Model assumptions. The input to our algorithms is either a simple polygon P or a PSLG G with n vertices, stored in a
read-only data structure.3 In case of a PSLG, we assume that G is given in a way that allows us to enumerate all edges of
G in O (n) time and to find the incident vertices of a given edge in constant time (a standard adjacency list representation
will do). In case of a polygon, we require that the vertices of P are stored according to their counterclockwise order along
the boundary, so that we can obtain the (clockwise and counterclockwise) neighbor of any given vertex in constant time.
We also assume that is takes constant time to access the x- and y-coordinates of any vertex and to perform basic geometric
operations, such as determining whether a point lies above or below a given line.

Storage is counted in terms of cells or words. As usual, a word is assumed to be large enough to contain either an input
item (such as a point coordinate) or a pointer into the input structure (of Θ(log n) bits). Thus, in order to convert our
storage bounds into bits, we have to multiply them by a factor of log n. In addition to the input, which can only be read,
the algorithm has O (s) words of work-space at its disposal for reading and writing. Here, s is a parameter of the model and
can range between 1 and n. We will consider both the case where s is a fixed constant and the case where s can be chosen
by the user. Since there is no way to store the result, we use an additional operation output in order to generate output
data. We require that every feature of the desired structure is output exactly once.

For simplicity, we will make the usual general position assumption: no three input vertices are on a line and no two
input vertices have the same x-coordinate.

Related work. Given the many applications of memory-constrained algorithms, a significant amount of research has been
devoted to them, even as early as in the 1980s [23]. One of the most studied problems in this setting is that of selection in
an unsorted array with elements from a totally ordered universe [11,18,23,24,26].

In computational complexity theory, the constant-work-space model is represented by the complexity class LOGSPACE [1].
There are several algorithmic results for this class, most prominently Reingold’s celebrated method for finding a path be-
tween two vertices in an undirected graph [27]. However, complexity theorists typically do not try to optimize the running
time of their constant-work-space algorithms, whereas one of our objectives is to solve a given problem as quickly as
possible under the memory constraint.

There are other models that allow only read-access to the input, such as the streaming model [25] or the multi-pass
model [10]. In these models, the input can be read only a bounded number of times in sequential order, whereas we
allow the input to be accessed in any order and as often as necessary. Other memory-constrained models are succinct data
structures [22] and in-place algorithms [7–9,12]. The aim of succinct data structures is to use the minimum number of
bits to represent a given input. Although this kind of approach significantly reduces the memory requirement, in many
cases Ω(n) bits are still necessary. For in-place algorithms, we also assume that only O (1) cells of work-space are available.
However, in this model we are allowed to reorder and sometimes rewrite the input data. This makes it possible to encode
our data structures through appropriate permutations of the input and often to achieve the best possible running time.
Several classic geometric problems, such as convex hull computation or nearest-neighbor search, have been considered in
this model [7–9,12]. Note that the improved running times in the in-place model come at the expense of requiring more
powerful operations from the computational environment, making the results less widely applicable. Moreover, in most
cases the input values are reordered and the original ordering cannot be recovered after the algorithm is executed. In our
problem definition, the input polygon is given as a list of vertices in (say) clockwise order. Hence, losing the ordering of the
input is equivalent to having the input destroyed.

A classic algorithm from computational geometry that fits into our model is the gift-wrapping method (also known as
Jarvis’ march): given n points in the plane, we can report the h points on the convex hull in O (nh) time using O (1) cells
of work-space [28]. More recently, Asano et al. [2] initiated the systematic study of constant-work-space algorithms in a
geometric context. They describe algorithms to compute well-known geometric structures (such as the Delaunay triangu-
lation, the Voronoi diagram, and the Euclidean minimum spanning tree) using O (1) cells of work-space. They also show
how to obtain a triangulation of a planar point set and how to find the edges of the shortest path between any two points
inside a simple polygon. These algorithms use constant work-space and run in quadratic time. We emphasize once again
that since the output may have linear size, it is not stored, but reported piece by piece. Recently, Barba et al. [5] gave a
constant-work-space algorithm for computing the visibility region of a point inside a simple polygon.

3 A plane straight-line graph (PSLG) consists of a planar point set V (vertices) and a set E of non-crossing line segments with endpoints in V (edges). By
planarity, we have |E| = O (|V |).
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