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We show that every convex polyhedron may be unfolded to one planar piece, and then
refolded to a different convex polyhedron. If the unfolding is restricted to cut only edges
of the polyhedron, we identify several polyhedra that are “edge-refold rigid” in the sense
that each of their unfoldings may only fold back to the original. For example, each of the
43,380 edge unfoldings of a dodecahedron may only fold back to the dodecahedron, and
we establish that 11 of the 13 Archimedean solids are also edge-refold rigid. We begin the
exploration of which classes of polyhedra are and are not edge-refold rigid, demonstrating
infinite rigid classes through perturbations, and identifying one infinite nonrigid class:
tetrahedra.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

It has been known since [7] and [3] that there are convex polyhedra, each of which may be unfolded to a planar polygon
and then refolded to different convex polyhedra. For example, the cube may be unfolded to a “Latin cross” polygon, which
may be refolded to 22 distinct non-cube convex polyhedra [5, Figs. 25.32-6]. But there has been only sporadic progress on
understanding which pairs of convex polyhedra1 have a common unfolding. A notable recent exception is the discovery [9]
of a series of unfoldings of a cube that refold in the limit to a regular tetrahedron, partially answering Open Problem 25.6
in [5, p. 424].

Here we begin to explore a new question, which we hope will shed light on the unfold–refold spectrum of problems:
Which polyhedra P are refold-rigid in the sense that any unfolding of P may only be refolded back to P? The answer
we provide here is: none—Every polyhedron P has an unfolding that refolds to an incongruent P ′ . Thus every P may be
transformed to some P ′ .

This somewhat surprising answer leads to the next natural question: Suppose the unfoldings are restricted to edge un-
foldings, those that only cut along edges of P (rather than permitting arbitrary cuts through the interior of faces). Say that
a polyhedron P whose every edge unfolding only refolds back to P is edge-refold rigid, and otherwise is an edge-refold
transformer. It was known that four of the five Platonic solids are edge-refold transformers (e.g., [4] and [8]). Here we prove
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that the dodecahedron is edge-refold rigid: all of its edge unfoldings only fold back to the dodecahedron. The proof also
demonstrates edge-refold rigidity for 11 of the Archimedean solids; we exhibit new refoldings of the truncated tetrahedron
and the cuboctahedron. We also establish the same rigidity for infinite classes of slightly perturbed versions of these poly-
hedra. In contrast to this, we show that every tetrahedron is an edge-refold transformer: at least one among a tetrahedron’s
16 edge unfoldings refolds to a different polyhedron.

This work raises many new questions, summarized in Section 6.

2. Notation and definitions

We will use P for a polyhedron in R
3 and P for a planar polygon. An unfolding of a polyhedron P is a development of

its surface after cutting to a single (possibly overlapping) polygon P in the plane. The surface of P must be cut open by a
spanning tree of its vertices to achieve this. An edge unfolding only includes edges of P in its spanning cut tree. Note that
we do not insist that unfoldings avoid overlap.

A folding of a polygon P is an identification of its boundary points that satisfies the three conditions of Alexandrov’s
theorem: (1) The identifications (or “gluings”) close up the perimeter of P without gaps or overlaps; (2) The resulting
surface is homeomorphic to a sphere; and (3) Identifications result in � 2π surface angle glued at every point. Under these
three conditions, Alexandrov’s theorem guarantees that the folding produces a convex polyhedron, unique once the gluing
is specified. See [1] or [5]. Note that there is no restriction that whole edges of P must be identified to whole edges, even
when P is produced by an edge unfolding. We call a gluing that satisfies the above conditions an Alexandrov gluing.

A polyhedron P is refold-rigid if every unfolding of P may only refold back to P . Otherwise, P is a transformer. A poly-
hedron is edge-refold rigid if every edge unfolding of P may only refold back to P , and otherwise it is an edge-refold
transformer. Note we consider a polyhedron P a transformer if an unfolding can refold to an incongruent P ′ . Some of our
proofs establish a P ′ with more vertices than P , so they are combinatorially different; some proofs establish the weaker
incongruence.

3. Polyhedra are transformers

The proof that no polyhedron P is refold-rigid breaks naturally into two cases. We first state a lemma that provides the
case partition. Let κ(v) be the curvature at vertex v ∈ P , i.e., the “angle gap” at v: 2π minus the total incident face angle
α(v) at v . By the Gauss–Bonnet theorem, the sum of all vertex curvatures on P is 4π .

Lemma 1. For every polyhedron P , either there is a pair of vertices with κ(a)+κ(b) > 2π , or there are two vertices each with at most
π curvature: κ(a) � π and κ(b) � π .

Proof. Suppose there is no pair with curvature sum more than 2π . So we have κ(v1)+κ(v2) � 2π and κ(v3)+κ(v4) � 2π
for four distinct vertices. Suppose neither of these pairs have both vertices with at most π curvature. If κ(v2) > π , then
κ(v1) � π ; and similarly, if κ(v4) > π , then κ(v3) � π . Thus we have identified two vertices, v1 and v3, both with at most
π curvature. �

We can extend this lemma to accommodate 3-vertex doubly covered triangles as polyhedra, because then every vertex
has curvature greater than π .

Lemma 2. Any polyhedron P with a pair of vertices with curvature sum more than 2π is not refold-rigid: There is an unfolding that
may be refolded to a different polyhedron P ′ .

Proof. Let κ(a) + κ(b) > 2π , and so the incident face angles satisfy α(a) + α(b) < 2π . Let γ be a shortest path on P
connecting a to b. Cut open P with a cut tree T that includes γ as an edge. How T is completed beyond the endpoints of
γ = ab doesn’t matter. (Recall our definition of unfolding does not demand non-overlap.)

Let γ1 and γ2 be the two sides of the cut γ , and let m1 and m2 be the midpoints of γ1 and γ2. Reglue the unfolding by
folding γ1 at m1 and gluing the two halves of γ1 together, and likewise fold γ2 at m2. All the remaining boundary of the
unfolding outside of γ is reglued back exactly as it was cut by T . See Fig. 1.

The midpoint folds at m1 and m2 have angle π (because γ is a geodesic). The gluing draws the endpoints a and b
together, forming a point with total angle α(a) + α(b) < 2π . Thus this gluing is an Alexandrov gluing, producing some
polyhedron P ′ . Generically P ′ has one more vertex than P : it gains two vertices at m1 and m2, and a and b are merged to
one. P ′ could only have the same number of vertices as P if α(a) + α(b) = 2π , which is excluded in this case. �
Lemma 3. Any polyhedron P with a pair of vertices each with curvature at most π is not refold-rigid: There is an unfolding that may
be refolded to a different polyhedron P ′ .
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