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of the polyhedron, we identify several polyhedra that are “edge-refold rigid” in the sense
that each of their unfoldings may only fold back to the original. For example, each of the
43,380 edge unfoldings of a dodecahedron may only fold back to the dodecahedron, and
we establish that 11 of the 13 Archimedean solids are also edge-refold rigid. We begin the

I;Z{;ﬁﬁ; exploration of which classes of polyhedra are and are not edge-refold rigid, demonstrating
Unfolding infinite rigid classes through perturbations, and identifying one infinite nonrigid class:
Folding tetrahedra.

Rigidity © 2013 Elsevier B.V. All rights reserved.

1. Introduction

It has been known since [7] and [3] that there are convex polyhedra, each of which may be unfolded to a planar polygon
and then refolded to different convex polyhedra. For example, the cube may be unfolded to a “Latin cross” polygon, which
may be refolded to 22 distinct non-cube convex polyhedra [5, Figs. 25.32-6]. But there has been only sporadic progress on
understanding which pairs of convex polyhedra! have a common unfolding. A notable recent exception is the discovery [9]
of a series of unfoldings of a cube that refold in the limit to a regular tetrahedron, partially answering Open Problem 25.6
in [5, p. 424].

Here we begin to explore a new question, which we hope will shed light on the unfold-refold spectrum of problems:
Which polyhedra P are refold-rigid in the sense that any unfolding of 7P may only be refolded back to P? The answer
we provide here is: NONE—Every polyhedron P has an unfolding that refolds to an incongruent P’. Thus every P may be
transformed to some P’.

This somewhat surprising answer leads to the next natural question: Suppose the unfoldings are restricted to edge un-
foldings, those that only cut along edges of P (rather than permitting arbitrary cuts through the interior of faces). Say that
a polyhedron P whose every edge unfolding only refolds back to P is edge-refold rigid, and otherwise is an edge-refold
transformer. It was known that four of the five Platonic solids are edge-refold transformers (e.g., [4] and [8]). Here we prove
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that the dodecahedron is edge-refold rigid: all of its edge unfoldings only fold back to the dodecahedron. The proof also
demonstrates edge-refold rigidity for 11 of the Archimedean solids; we exhibit new refoldings of the truncated tetrahedron
and the cuboctahedron. We also establish the same rigidity for infinite classes of slightly perturbed versions of these poly-
hedra. In contrast to this, we show that every tetrahedron is an edge-refold transformer: at least one among a tetrahedron’s
16 edge unfoldings refolds to a different polyhedron.

This work raises many new questions, summarized in Section 6.

2. Notation and definitions

We will use P for a polyhedron in R? and P for a planar polygon. An unfolding of a polyhedron P is a development of
its surface after cutting to a single (possibly overlapping) polygon P in the plane. The surface of P must be cut open by a
spanning tree of its vertices to achieve this. An edge unfolding only includes edges of P in its spanning cut tree. Note that
we do not insist that unfoldings avoid overlap.

A folding of a polygon P is an identification of its boundary points that satisfies the three conditions of Alexandrov’s
theorem: (1) The identifications (or “gluings”) close up the perimeter of P without gaps or overlaps; (2) The resulting
surface is homeomorphic to a sphere; and (3) Identifications result in < 27 surface angle glued at every point. Under these
three conditions, Alexandrov’s theorem guarantees that the folding produces a convex polyhedron, unique once the gluing
is specified. See [1] or [5]. Note that there is no restriction that whole edges of P must be identified to whole edges, even
when P is produced by an edge unfolding. We call a gluing that satisfies the above conditions an Alexandrov gluing.

A polyhedron P is refold-rigid if every unfolding of 7P may only refold back to P. Otherwise, P is a transformer. A poly-
hedron is edge-refold rigid if every edge unfolding of P may only refold back to P, and otherwise it is an edge-refold
transformer. Note we consider a polyhedron P a transformer if an unfolding can refold to an incongruent P’. Some of our
proofs establish a P’ with more vertices than 7, so they are combinatorially different; some proofs establish the weaker
incongruence.

3. Polyhedra are transformers

The proof that no polyhedron P is refold-rigid breaks naturally into two cases. We first state a lemma that provides the
case partition. Let x(v) be the curvature at vertex v € P, i.e., the “angle gap” at v: 2 minus the total incident face angle
o (v) at v. By the Gauss-Bonnet theorem, the sum of all vertex curvatures on P is 4.

Lemma 1. For every polyhedron P, either there is a pair of vertices with « (a) 4+ « (b) > 2, or there are two vertices each with at most
7 curvature: k (a) < and k(b) < 7.

Proof. Suppose there is no pair with curvature sum more than 2. So we have k(v1) +k(v2) <2 and k(v3)+k(vg) <27
for four distinct vertices. Suppose neither of these pairs have both vertices with at most 7 curvature. If x(v,) > 7, then
Kk (v1) < r; and similarly, if k¥ (v4) > 7, then «(v3) < . Thus we have identified two vertices, vi and v3, both with at most
7 curvature. O

We can extend this lemma to accommodate 3-vertex doubly covered triangles as polyhedra, because then every vertex
has curvature greater than .

Lemma 2. Any polyhedron P with a pair of vertices with curvature sum more than 27 is not refold-rigid: There is an unfolding that
may be refolded to a different polyhedron P’.

Proof. Let «(a) + «(b) > 27, and so the incident face angles satisfy «(a) + a(b) < 2m. Let y be a shortest path on P
connecting a to b. Cut open P with a cut tree T that includes y as an edge. How T is completed beyond the endpoints of
y = ab doesn’t matter. (Recall our definition of unfolding does not demand non-overlap.)

Let y; and y;, be the two sides of the cut y, and let m; and m;, be the midpoints of y; and y5. Reglue the unfolding by
folding y; at m; and gluing the two halves of y; together, and likewise fold y, at m;. All the remaining boundary of the
unfolding outside of y is reglued back exactly as it was cut by T. See Fig. 1.

The midpoint folds at m; and m; have angle m (because y is a geodesic). The gluing draws the endpoints a and b
together, forming a point with total angle «(a) + a(b) < 27. Thus this gluing is an Alexandrov gluing, producing some
polyhedron P’. Generically P’ has one more vertex than P: it gains two vertices at m; and mjy, and a and b are merged to
one. P’ could only have the same number of vertices as P if a(a) + «(b) = 27, which is excluded in this case. O

Lemma 3. Any polyhedron P with a pair of vertices each with curvature at most 7 is not refold-rigid: There is an unfolding that may
be refolded to a different polyhedron P’.
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