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Oja depth (Oja 1983) is a generalization of the median to multivariate data that measures
the centrality of a point x with respect to a set S of points in such a way that points
with smaller Oja depth are more central with respect to S . Two relationships involving
Oja depth and centers of mass are presented. The first is a form of Centerpoint Theorem
which shows that the center of mass of the convex hull of a point set has low Oja depth.
The second is an approximation result which shows that the center of mass of a point set
approximates a point of minimum Oja depth.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Given a set S of n points in R
d , the Oja depth [9] of a point x ∈ R

d is

d(x, S) =
∑

y1,...,yd∈(S
d)

v(x, y1, . . . , yd),

where v(p1, . . . , pd+1) denotes the volume of the simplex whose vertices are p1, . . . , pd+1.1 A point in R
d with the mini-

mum Oja depth is called an Oja center.

1.1. New results

In this paper we consider relationships between centers of mass of certain sets and Oja depth. The center of mass of a
finite point set S ⊂ R

d is the average of those points,

c(S) = |S|−1
∑
x∈S

x.

If P ⊂ R
d is a bounded object of non-zero volume, the center of mass of P is
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c(P ) =
∫

x∈P xdx

v(P )
.

In this paper, we prove the following results about the Oja depth of an n point set S , whose convex hull A has unit
volume and that has an Oja center x:

d
(
c(A), S

)
�

(
n

d

)
/(d + 1), (1)

d
(
c(S), S

)
� (d + 1)d(x, S). (2)

The bound in (1) is not known to be tight. The bound in (2) is tight, up to a lower-order term, for some point sets S .

1.2. Related results

Our first result, (1), is a form of Centerpoint Theorem that upper-bounds the Oja depth of c(A), and hence also the Oja
depth of x, in terms of the volume of the convex hull of S . Previously, centerpoint theorems were known for other depth
functions such as Tukey depth [7,10,12] and simplicial depth [2,3,6]. To the best of our knowledge, this is the first such
result for Oja depth.

Our next result, (2), can be viewed in two ways:

1. The first is a linear-time algorithm to find a point whose depth is a constant factor approximation of the depth of the
Oja center. In 1-d, Oja depth is minimized by the median, which can be found in O (n) time. However, in 2-d, the best
known algorithm for minimizing Oja depth exactly takes O (n log3 n) time [1]. Approximation algorithms for minimizing
Oja depth, based on uniform grids and sampling from

(S
d

)
, are given by Ronkainen, Oja, and Orponen [11]; this algorithm

and several others are implemented in the R-package, OjaNP [5]. However, in pathological cases, their approximation
algorithm is not guaranteed (or even likely) to find a point that closely approximates the Oja center, either in terms of
distance or in terms of its Oja depth.2

2. Another view of (2) is that it gives insight into the Oja depth function and the Oja center. In some sense, it tells us that
the Oja center is not terribly different from the center of mass of S , since the center of mass of S minimizes, to within
a constant factor, the Oja depth function.

2. Oja center and mass center of A

In this section, we relate the Oja depth of the center of mass of the convex hull of S to the volume of the convex hull
of S . Throughout this section, A denotes the convex hull of S and we assume, without loss of generality, that v(A) = 1.

Our upper-bound is based on the following central identity: For any disjoint sets X, Y ⊆ R
d with v(X ∪ Y ) > 0,

c(X ∪ Y ) = v(X) c(X) + v(Y ) c(Y )

v(X ∪ Y )
.

We first give an inductive proof of our result for point sets in R
2, and then give a proof for point sets in R

d that uses tools
from convex geometry.

2.1. An upper bound in R
2

The following result shows that, for a convex polygon E (e.g., E = A), it is not possible to form an overly-large triangle
that has c(E) as one of its vertices:

Lemma 1. Let A be a convex polygon and let p1 and p2 be any two points in A. Then v(p1, p2, c(A)) � v(A)/3.

Proof. Assume, without loss of generality, that p1 p2 is horizontal and that c(A) is above p1 p2. We may assume that p1 p2
is edge of A since, otherwise, we can remove the part of A that is below p1 p2. This decreases v(A) and moves c(A) further
away from the segment p1 p2, which increases v(c(A), p1, p2).

The proof is by induction on the number of vertices of A. If A is a triangle then one can easily verify the result. Therefore,
assume A has n � 4 vertices. Consider an edge ab of A where a �= p2 is adjacent to p1 and let c �= a be adjacent to b (see
Fig. 1). Since A has 4 or more vertices, we may assume that the y-coordinate of b is not smaller than the y-coordinate of a.
Otherwise we can reverse the roles of p1 and p2 and redefine a and b with respect to the new p1.

Draw a ray r whose origin is at p1 and such that the triangle t1 supported by p1a, ab and r and the triangle t2 supported
by r, ab, and the line through bc have the same area. Such a ray is guaranteed to exist by a standard continuity argument
that starts with r containing a and rotates about p1 until r contains b.

2 This follows from the fact that the value of the Oja depth function and the location of the Oja center can be arbitrarily different for two sets S1 and
S2 that differ in only d points [8].
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