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In 1994 Grünbaum showed that, given a point set S in R
3, it is always possible to construct

a polyhedron whose vertices are exactly S . Such a polyhedron is called a polyhedronization
of S . Agarwal et al. extended this work in 2008 by showing that there always exists a
polyhedronization that can be decomposed into a union of tetrahedra (tetrahedralizable). In
the same work they introduced the notion of a serpentine polyhedronization for which the
dual of its tetrahedralization is a chain. In this work we present a randomized algorithm
running in O (n log6 n) expected time which constructs a serpentine polyhedronization that
has vertices with degree at most 7, answering an open question by Agarwal et al.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Any set S of points in the plane (not all of which are collinear) admits a polygonization, that is, there is a simple polygon
whose vertex set is exactly S . Similarly, a point set S ⊂ R

3 admits a polyhedronization if there exists a simple polyhedron
that has exactly S as its vertices. In 1994, Grünbaum proved that every point set in R

3 (not all of which are coplanar)
admits a polyhedronization. Unfortunately, the polyhedronizations generated by Grünbaum’s method can be impossible to
tetrahedralize. This is because they may contain Schönhardt polyhedra, a class of nontetrahedralizable polyhedra [5].

In 2008, Agarwal, Hurtado, Toussaint, and Trias described a variety of methods for producing polyhedronizations with
various properties [1]. One of these methods, called hinge polyhedronization, produces serpentine polyhedronizations, mean-
ing that the polyhedron admits a tetrahedralization whose dual (a graph where each tetrahedron is a node and each edge
connects a pair of nodes whose primal entities are tetrahedra sharing a face) is a chain. Serpentine polyhedronizations
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Fig. 1. Constructing a tunnel between T0, T1. The vertices u0 and v0 have degree 5 and 4, while w0 has degree 3. The other end of the tunnel, T1, has
three vertices that will be labeled u1, v1, w1 with degree 3, 4, and 5 (shown in parentheses), respectively.

produced by the hinge polyhedronization method are guaranteed to have two vertices with edges to every other vertex in
the set. As a result, two vertices in these constructions have degree n − 1, where n is the number of points in the set. It
should be noted that some tetrahedra produced by this method may be degenerate if the point set is not in general position,
that is, it contains four coplanar points. A natural question, and one posed by Agarwal et al., is whether it is always possible
to create serpentine polyhedronizations with bounded degree.

In this work we describe a randomized algorithm for point sets in general position that constructs a serpentine poly-
hedronization with constant bounded degree. This algorithm runs in O (n log6 n) expected time, and the expectation is
independent of the input point set and output polyhedronization. The bound on the degree of the produced polyhe-
dronizations is 7, which we show is nearly optimal for all sets of more than 12 points. Such bounded-degree serpentine
polyhedronizations are useful in applications of modeling and graphics, where low local complexity is desirable for engi-
neering and computational efficiency.

2. Setting

The convex hull of S , written CH(S), is the intersection of all half-spaces containing S . The boundary of each face
of CH(S) is a polygon with coplanar vertices. In the next five sections we assume that S has no four coplanar points, and
in the conclusion briefly discuss relaxing this assumption. so each of the faces of CH(S) is triangular. We call the three
vertices composing a face of CH(S) a face triplet.

We will make reference to points and faces that see each other. We say that a pair of points p,q can see each other
if the segment pq does not intersect a portion of any polyhedron present (either the convex hull of a set of points or a
portion of the partially constructed polyhedronization). Similarly, two segments s1 and s2 can see each other if every pair
of points p ∈ s1 and q ∈ s2 can see each other. A face f is the planar region bounded by a triangle formed by three points
of S . A point p can see a face f if p can see every point in f (strong visibility). Similarly, a point p can see a segment s
if p can see every point on s.

3. Algorithm

In this section we present a high-level description of the algorithm. Begin with a point set S ⊂ R
3. Select a face triplet

of CH(S) arbitrarily. Call this face triplet T0. Let S0 = S \ T0. Assign the labels u0, v0, w0 arbitrarily to the vertices of T0
and connect the three vertices to form a triangle.

Next we search for a face triplet T1 of CH(S0) that we can attach to the triangle T0 via a polyhedron tunnel (see Fig. 1).
The tunnel is tetrahedralizable and has the face triplet T0 at one end, the face triplet T1 at the other end, and it is disjoint
from the interior of CH(S0). The method for selecting T1 is described in the next section. Once the tunnel is construction,
we will require that vertex w0 has degree 3 and vertices u0 and v0 have degrees 5 and 4 (not necessarily respectively).
Moreover, the vertices of the face triplet T1 which we will call u1, v1, w1 should have degree 3, 4, and 5, respectively. Note
that the vertex degree only counts edges in the tunnel and that the constructed tunnel must meet the degree requirements
for the vertices of T0 while it determines the labeling of the vertices u1, v1, w1 in T1.

After finding a face triplet T1 that meets these requirements, the process is repeated for T1 and S1, T2 and S2, where
Si = Si−1 \ Ti , until Si contains fewer than three points. At each step Ti has three vertices: ui connected to 3 vertices of Si ,
and vi , wi that are connected to 1 and 2 vertices of Si (not necessarily respectively). Once Si contains fewer than three
points, a degenerate tunnel is built out of the remaining points and the algorithm stops. In Sections 4 and 5 we prove that
such a construction is always possible, producing a valid serpentine polyhedronization with vertex degrees bounded by 7.
In Section 6 we provide details regarding the data structures used and provide an analysis of the algorithm’s running time.

4. Tunnel construction

Here we prove that given Ti , it is always possible to find a face triplet Ti+1 such that a three-tetrahedron tunnel
(�1�2�3) can be constructed between them.
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