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a b s t r a c t

In this paper we present a sequential Monte Carlo algorithm for Bayesian sequential
experimental design applied to generalised non-linear models for discrete data. The
approach is computationally convenient in that the information of newly observed data
can be incorporated through a simple re-weighting step. We also consider a flexible
parametricmodel for the stimulus–response relationship togetherwith a newly developed
hybrid design utility that can produce more robust estimates of the target stimulus in
the presence of substantial model and parameter uncertainty. The algorithm is applied to
hypothetical clinical trial or bioassay scenarios. In the discussion, potential generalisations
of the algorithm are suggested to possibly extend its applicability to a wide variety of
scenarios.
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1. Introduction

In sequential or adaptive design, one makes use of currently available data in order to make an informed decision about
the selection of the next design point. This decision is based on optimising someutility function over a set of allowable design
points, which takes into account that many different observables are plausible at each design point. In many instances the
utility function involves computing the expected information gain about the parameters, or a function thereof, of a particular
model that is assumed to generate the observed data. Sequential designs are useful as they are generally more efficient
than static designs for non-linear models in the presence of parameter and model uncertainty (see, for example, Dror and
Steinberg, 2008). Therefore such approaches are critical in applications where data are costly to collect.

The incorporation of parameter and model uncertainty is most rigorously achieved within a Bayesian framework.
Consequently, many authors have adopted such an approach in optimal experimental design (see, for example, Chaloner
and Verdinelli, 1995; Müller et al., 2007; Amzal et al., 2006). The sequential nature of how the data are observed lends itself
naturally to the use of an on-line updating algorithm such as sequential Monte Carlo (SMC). To our knowledge there has
been little application of this methodology to sequential design problems. Gramacy and Polson (2011) present a particle
learning algorithm for sequential design, but have a specific focus on Gaussian process models. The aim of this article is to
present an algorithm for sequential design problems that can be applied when there exists a finite set of design points and
a discrete observation process. We believe that this approach has the potential to be generalised to other settings (see the
discussion for more details).

The implementation of sequential design methodology is prevalent throughout the literature, for example, in computer
experiments (Loeppky et al., 2010), neural networks (Pavel and Miroslav, 2010), item response theory (Chang and Ying,
2009), neurophysiology experiments (Lewi et al., 2009), clinical trials (Liu et al., 2009) and bioassays (Tian andWang, 2009).
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In this paper we illustrate the algorithms and utility functions we develop on two motivating examples. We focus on utility
functions where the objective is to learn about a particular value on the stimulus–response curve; however some of the
utilities can be applied generally and alternative utilities can be incorporated straightforwardly.

In both motivating examples we use a generalised linear or non-linear model framework (see, for example, Biedermann
andWoods, 2011) where the predictor is a function of the stimulus applied. The first example is binary; for example it could
be whether or not a particular toxic event (or adverse reaction) occurs after dose administration in phase I clinical trials or
an all-or-nothing response in quantal assay. Secondly, we consider a count response (for example, the number of seizures in
epileptic studies such as in phase II clinical trials) modelled via a Poisson distribution (see Russell et al., 2009). We assume
that each subject receives a single stimulus, and that each response is available before the next subject. In both cases we are
interested in estimating the stimulus value based on a particular expected response.

Bayesian sequential design is suited to SMC methods as the sequence of targets is built through data annealing. SMC
algorithms (also known as particle filters) sample from a sequence of target distributions that evolve smoothly (see Del
Moral et al., 2006). Weighted samples (particles) are generated from a tractable importance distribution and are propagated
through the sequence of targets via iteratively applying re-weighting (importance sampling), resampling and mutation
steps. New data are incorporated via a simple re-weighting step rather than sampling the full posterior distribution via
Markov chain Monte Carlo (MCMC) as in McGree et al. (2012) for example. Therefore the major motivation for an SMC
approach is computational. We make use of an efficient Metropolis–Hastings algorithm within the SMC to diversify the
particle population, called the mutation step, after resampling to avoid particle degeneration, although this does not occur
after every re-weight. Moreover, this step is potentially parallelisable. The use of MCMC as a mutation kernel within SMC
results in an algorithm complexity that is linear in the number of particles. Furthermore, we find that SMC provides a
convenientway to estimate theKullback–Leibler divergence (Kullback and Leibler, 1951),which is a general utility of interest
in Bayesian design problems (Bernardo and Smith, 1994).

In the stimulus selection phase of the algorithm, a newposterior distributionmust be approximated for each combination
of new stimulus and response in order to evaluate the utility value for each design point. It is important to note, however,
that these posteriors do not form part of our sequence of targets, and are solely used for the stimulus selection. In this part
we use importance sampling (as per McGree et al., 2012) to obtain estimated utilities via the weighted samples. We use the
algorithm to efficiently compare the performance of several fully-Bayesian utilities for adaptive designs where the interest
is in estimating the target stimulus, which is a function of model parameters. We implement a new hybrid utility for this
purpose that can be useful in the presence of little prior information.

In the parametric approach to adaptive studies an underlying model must be assumed for the observed data. In this
article we investigate the impact of model mis-specification on the estimate of the target stimulus and propose a more
general model that can lead to more robust estimates.

This paper is organised as follows. In Section 2 we detail the parametric models we consider as well as the priors we
place on the parameters of such models. SMC is introduced in Section 3 together with the self-tuning SMC algorithm we
develop for Bayesian sequential design. In Section 4 we present the various Bayesian utilities we consider to assist in the
stimulus selection process. The results are given in Section 5 followed by a concluding discussion in Section 6. One part of
the discussion involves suggestions for generalising the algorithm to continuous responses and non-finite design spaces.

2. Problem and Bayesian framework

2.1. Inferential problem

In the sequential experimental design set-up, the current data togetherwith a utility function is used tomake an informed
decision about the values of the controllable variables to use for the next experimental unit. Using a Bayesian approach,
the current information is encapsulated within the posterior distribution, πt(θ|y1:t ,D1:t) ∝ π(θ)

t
i=1 f (yi|θ,Di), if the

responses y1:t = (y1, . . . , yt) are conditionally independent given D1:t . The value of the controllable variable for the tth
subject is given by Dt . The prior, π(θ), contains the information about the model parameter, θ, before any experiments. The
problem is then to determine an appropriate value for Dt+1 (the so-called stimulus in this paper) to apply to the t + 1th
experimental unit in order to achieve some inferential goal as quickly as possible. The aim of the experiment is captured by
the utility function which depends on the currently collected data, U(d|y1:t ,D1:t). Maximising this utility over the design
space, Da, we obtain

Dt+1 = argmax
d∈Da

U(d|y1:t ,D1:t).

Such an approach is referred to as a one-at-a-time or myopic design. The utility value is given by the expectation of the
user-specified utility function, U(d, θ, z|y1:t ,D1:t), over the posterior parameter space and response space. For discrete data
we obtain

U(d|y1:t ,D1:t) =


z∈S

f (z|y1:t ,D1:t , d)


θ

U(d, θ, z|y1:t ,D1:t)π(θ|(y1:t , z), (D1:t , d))dθ,
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