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a b s t r a c t

A number of recent approaches to modeling social networks have focussed on embedding
the nodes in a latent ‘‘social space’’. Nodes that are in close proximity are more likely to
form links than those who are distant. This naturally accounts for reciprocal and transitive
relationships which are commonly found in many network datasets. The Latent Position
ClusterModel is one suchmodel that also explicitly incorporates clustering bymodeling the
locations using a finite Gaussian mixture model. Observed covariates and sociality random
effects may also be modeled. However, inference for the model via MCMC is cumbersome
and thus scaling to large networks is a challenge. Variational Bayesian methods offer an
alternative inference methodology for this problem. Sampling based MCMC is replaced by
an optimization that requires many orders of magnitude fewer iterations to converge. A
Variational Bayesian algorithm for the Latent Position ClusterModel is therefore developed
and demonstrated.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Hoff et al. (2002) introduced latent space models for networks. In this model, the nodes are embedded in an unobserved
‘‘social space’’; nodes closer together are more likely to link than nodes far apart and inference is performed on the latent
positions of the nodes. Links are modeled as occurring independently given the positions of the nodes (and optionally any
observed link or node covariates). One appealing characteristic of such models is that they naturally account for reciprocity
and transitivity. In addition, plotting the inferred positions of the nodes gives an intuitive visualization of the network.

Handcock et al. (2007) proposed the Latent Position Cluster Model (LPCM) which extends the latent space models to
allow for model based clustering of the nodes. This is to accommodate the clustering of nodes in the network beyond that
expected from simple transitivity. Clustering is thus included explicitly in themodel rather than found by a post-hoc analysis
of the estimated node locations. A spherical Gaussian mixture model structure is assumed for the latent positions.

1.1. Motivation for using the variational method

Currently, inference for the LPCM is via MCMC in a Bayesian setting. The disadvantage of this approach is computational
and fitting the model to large or even medium size network datasets is impractical or impossible. Variational Bayesian
inference offers one approximate solution to this problem. A closed form posterior is found that is ‘‘close’’ to the intractable
posterior. This method has already been exploited successfully for other fully Bayesian social network models. We next
motivate the contribution in this paper, namely to develop and assess Variational Bayesian algorithms for the LPCM.

∗ Corresponding authors.
E-mail address:michael.salter-townshend@ucd.ie (M. Salter-Townshend).

0167-9473/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2012.08.004

http://dx.doi.org/10.1016/j.csda.2012.08.004
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
mailto:michael.salter-townshend@ucd.ie
http://dx.doi.org/10.1016/j.csda.2012.08.004


662 M. Salter-Townshend, T.B. Murphy / Computational Statistics and Data Analysis 57 (2013) 661–671

In the published discussion of Handcock et al. (2007), the following contributions are amongst those made:

• David Blei and Stephen E. Feinberg: ‘‘We have appealed to variational methods for a computationally efficient approx-
imation to the posterior (for a mixed membership blockmodel). These methods can scale to large matrices because of
the simplified approximation (but at an unknown cost to accuracy). It would be interesting to understand computational
trade-offs for the authors method (LPCM) as the sample size grows and when large numbers of covariates are added’’.
• Dirk Husmeier and Chris Glasbey: ‘‘Although a full reversible jump Markov chain Monte Carlo scheme might be compu-

tationally prohibitive, variational methods, which are currently very popular in themachine learning community, would
presumably provide amuch better approximation to the integration andmight therefore provide a promising avenue for
future research’’.
• David S. Leslie: ‘‘I congratulate the authors for their interesting paper. However, it seems that the Markov chain Monte

Carlo sampling scheme that was used results in extremely slow mixing, requiring 2 million iterations with only every
1000th iteration being used’’.

Thiswork is further prompted by Airoldi et al. (2008)when the authors state ‘‘It would be interesting to develop a variational
algorithm for the latent space models’’.

1.2. Specification of the latent position cluster model

In the LSM and LPCM, a binary interactions sociomatrix Y is modeled using logistic regression in which the probability
of a link between two nodes depends on the distance between the nodes in the latent space.

log− odds(yi,j = 1|z i, z j, β) = log


P{yi,j = 1}
P{yi,j = 0}


= β − |z i − z j|, (1)

where yi,j = 1 if node i links with node j and yi,j = 0 otherwise, β is an intercept parameter and |z i − z j| is the Euclidean
distance between the latent positions z i and z j of nodes i and j. The links are assumed to be independent conditional on the
latent positions of the nodes in the latent space.

Hence, the probability of the observed network Y given the latent positions Z = (z1, . . . , zN) of all of the nodes is

P(Y |β, Z) =
N
i=1

N
j≠i
j=1


exp(β − |z i − z j|)

1+ exp(β − |z i − z j|)

yi,j 
1

1+ exp(β − |z i − z j|)

(1−yi,j)
.

Note that if the network is undirected then the product term is taken over i < j instead of i ≠ j.
For the LPCM, in order to represent clustering of nodes in the network, the latent positions Z aremodeled as coming from

a mixture of G multivariate normal distributions.

z i ∼
G

g=1

λg MVNd(µg
, σ 2

g Id), (2)

where λg is the probability that a node belongs to the gth group and Id is the d × d identity matrix. We let λ =
(λ1, λ2, . . . , λG),µ = (µ1
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In order to fit the model in a Bayesian setting, the following hierarchical priors are assumed for β, λ, σ and µ:

λ ∼ Dirichlet(ν), (3)

β ∼ Normal(ξ , ψ2), (4)

µ
g
∼ MVNd(0, ω2Id), (5)

and

σ 2
g ∼ σ

2
0 Inverse χ2

α (6)

where the values ξ, ψ2, ν, σ 2
0 , α and ω2 are fixed prior hyper-parameters.

Hence, the posterior of the latent positions and the model parameters is given by,

p(Z, λ, β,µ, σ 2
|Y ) = Cp(Y |β, Z)p(Z |λ,µ, σ 2Id)p(λ|ν)p(β|ξ, ψ2)p(µ|0, ω2Id)p(σ 2

|σ 2
0 , α) (7)

where the proportionality constant C is unknown and therefore the posterior is only known up to proportionality.

1.3. Variational Bayesian inference

We develop a Variational Bayesian inference procedure for approximating the posterior distribution of the latent
variables in the LPCM. This approach facilitates the application of the LPCM to larger networks than is currently possible



Download English Version:

https://daneshyari.com/en/article/10327510

Download Persian Version:

https://daneshyari.com/article/10327510

Daneshyari.com

https://daneshyari.com/en/article/10327510
https://daneshyari.com/article/10327510
https://daneshyari.com

