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a b s t r a c t

Quadratic loss is predominantly used in the literature as the performance measure
for nonparametric density estimation, while nonparametric mixture models have been
studied and estimated almost exclusively via the maximum likelihood approach. In this
paper, we relate both for estimating a nonparametric density function. Specifically, we
consider nonparametric estimation of a mixing distribution by minimizing the quadratic
distance between the empirical and the mixture distribution, both being smoothed by
kernel functions, a technique known as double smoothing. Experimental studies show that
the new mixture-based density estimators outperform the popular kernel-based density
estimators in terms of mean integrated squared error for practically all the distributions
that we studied, thanks to the substantial bias reduction provided by nonparametric
mixture models and double smoothing.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Kernel-based density estimation iswidely used for nonparametric density estimation. Owing to its nature of convolution,
it is also known for its severe bias, as manifested by its tendency of under-estimating the peaks and over-estimating the
valleys of a density function. To reduce bias, we consider using nonparametric mixture models for nonparametric density
estimation. Unlike the classical likelihood-based approach (Lindsay, 1995; Böhning, 2000), we adopt the quadratic loss as
the objective function. Using the quadratic loss addresses the bias issue directly and relates itself to the mean integrated
squared error, the performance measure that is widely used for nonparametric density estimation.

Computationally, fitting a nonparametricmixturemodel byminimizing the quadratic loss has not been properly resolved
in the literature. Recently, Balabdaoui and Wellner (2010) briefly considered this problem in the context of k-monotone
density estimation. Because of the complicated characterization owing to the density constraint, they actually considered an
alternative optimization problem that is over the class of all k-monotone functions, not densities. As a result, their estimates
may turn out to be not density functions. In this paper, we present a fast algorithm that, being a variant of the constrained
Newton method (Wang, 2007), produces a density estimate directly. This algorithm also works for k-monotone density
estimation.

To improve estimation accuracy, we also adopt the doubly-smoothing strategy for our nonparametric mixture model
estimation, which has only been previously used for parametric models (Basu and Lindsay, 1994; Seo and Lindsay, 2010).
This strategy smooths both the data and the model density with the same scaled kernel function. It results in a quadratic
loss that is defined between two continuous density functions, which appears to make more sense and leads to improved
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estimation accuracy.We shall call the resulting estimator theminimumquadratic distancemixture-based density estimator
(QMDE). For almost all distributions we studied, it has a substantially reduced bias, as compared with the kernel-based
density estimator (KDE), which overall helps to give a smaller mean integrated squared error than the KDE.

The remainder of this paper is organized as follows. Section 2 briefly describes the kernel-based and mixture-based
density estimation and introduces the quadratic losswith double smoothing. Section 3 studies the problemof nonparametric
minimum quadratic distance estimation, including the characterization and computation of a solution. Section 4 establishes
the consistency of the estimator for nonparametric density estimation and discusses the issue of bandwidth selection.
Section 5 reports some simulation studies that compare the performance of the QMDE and a few competitors, in particular,
the KDE, and three real data sets are studied in Section 6. Section 7 gives some final remarks.

2. Kernel-based vs. mixture-based density estimation

2.1. Kernel-based density estimation

The KDE of a density f based on a random sample x1, . . . , xn is given by

f̂h(x) =
1
n

n
i=1

kh(x − xi), (1)

with kh(y) = k(y/h)/h, where k is called a kernel function and h the bandwidth. k is usually taken to be a symmetric
and unimodal density function, e.g., the standard Gaussian density. See Silverman (1986) and Wand and Jones (1995) for
extensive coverage of this topic.

The KDE is in fact a convolution process. Let us write the convolution between two density functions p and q as

(p ∗ q)(x) =


p(x − y)q(y) dy, x ∈ R.

Throughout the paper, we shall frequently use an uppercase letter to denote a distribution function, and its lowercase, with
the same super-/sub-scripts if needed, to denote the corresponding probability density (or mass) function. Let the empirical
distribution function be F̂n, which hence has probability mass function f̂n. The KDE (1) can thus be written

f̂h = kh ∗ f̂n.

At point x, it has bias (kh ∗ f )(x) − f (x). From this formulation, it can be easily seen that its bias is largely caused by the
convolution, which is manifest through its flattening effect around the peaks and troughs of a density. To address the bias
problem associated with the KDE, improvements have been proposed in the literature. For example, Hazelton and Turlach
(2009) proposed a reweighted KDEmethod in which each of the weights is not fixed at 1

n but rather a free parameter subject
to estimation.

Another drawback of the above basic KDE is that all data points are needed, with equal weights, in the resulting model.
To overcome this, Kim (1995) considered the KDE with unequal weights, which, via the least squares method, results in a
sparse weight vector, for most weights typically vanish at convergence. The variable location KDE was studied by Jones and
Henderson (2009), which, for any fixed bandwidth, is approximately equivalent to the nonparametric maximum likelihood
estimation of a mixture model, which has a sparse solution.

2.2. Mixture-based density estimation

Nonparametric mixture models have been widely applied in many disciplines. They offer a flexible class of densities and
one may even view the kernel-based estimators as their special cases. The deconvolution nature of their estimation and
the sparse solutions they provide make them particularly suitable for nonparametric density estimation (Wang and Chee,
2012).

In order to compare with the KDE, as well as to establish consistency later (Section 4.1), let us consider using the
same kernel function for mixture components as the KDE. The nonparametric mixture distribution with a mixing location
parameter has a density given by

mG,β(x) =


kβ(x − θ) dG(θ), (2)

where β is the bandwidth parameter and G the mixing distribution function, which can be arbitrary. The mixture density
mG,β is also a convolution:

mG,β = kβ ∗ g.

Apparently the KDE is just a special mixture distribution, which has mixing distribution F̂n.
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