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a b s t r a c t

In this paper, we study the robust estimation for the covariance matrix of stationary
multivariate time series. As a robust estimator, we propose to use a minimum density
power divergence estimator (MDPDE) designed by Basu et al. (1998). To supplement the
result of Kim and Lee (2011), we employ a multivariate normal mixture family instead of
a multivariate normal family. As a special case, we consider the robust estimator for the
autocovariance function of univariate stationary time series. It is shown that the MDPDE
is strongly consistent and asymptotically normal under regularity conditions. Simulation
results are provided for illustration. A real data analysis applied to the portfolio selection
problem is also considered.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Themaximum likelihood estimator (MLE) for normalmixturemodels has been studied bymany authors; for instance, we
can refer the reader to Sundberg (1974), Laird (1978), Redner (1981), Lindsay (1983), Redner andWalker (1984), Hathaway
(1985), and the articles cited therein. It is widely appreciated that MLE shows very poor performance either when outliers
exist or the likelihood function explodes as in such a case that one of the means in the model equals one of the data and the
corresponding variance is close to 0. To copewith such defect, the research has developed theminimumdistance estimators
based on theWolfowitz distance (Choi, 1969), the Cramer–vonMises distance (Woodward et al., 1984), the squared L2 norm
of cumulative distribution function (Clarke and Heathcote, 1994), the minimum Hellinger distance (Cutler and Cordero-
Braña, 1996) and L2 distance of the density function (Scott, 2001). Unlike the others, the minimum Hellinger distance has
the asymptotic efficiency as MLE achieves when observations follow hypothesized models under consideration. However,
this method has a drawback of requiring to use some nonparametric smoothing methods, where one possibly encounters
rather a demanding problem like the selection of bandwidth.

Estimation of the autocovariance function (ACF) has been a core issue in time series analysis since ACF stands for the
dependence structure of time series and the estimation of ACF is closely connected with a model selection problem. Due
to its importance, some authors studied the robust estimation for ACF in univariate time series; for instance, see Ma and
Genton (2000). Ma and Genton’s estimator is proven to produce a highly robust estimator for the ACF. However, it also
has a shortcoming that the normalizing factor in their estimator must be chosen differently according to the underlying
distribution of given data. To overcome this defect, Kim and Lee (2011) proposed to use the minimum density power
divergence estimator (MDPDE) designated by Basu et al. (1998) (BHHJ) in the ACF estimation problem and demonstrated
a superiority to Ma and Genton’s estimator. The MDPDE is proven to have strong robust properties with low loss in
the asymptotic efficiency relative to the MLE under various circumstances. As a relevant paper, we refer the reader to
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Fujisawa and Eguchi (2006), who show that the objective function of MDPDE is bounded under mild conditions in iid
univariate normal mixture models.

The objective of this paper is to provide a robust estimator for the mean and covariance of multivariate time series. In
this study, we use the MDPDE method but employ a multivariate normal mixture family instead of a multivariate normal
family since according to the result of Kim and Lee (2011), the normal distribution approach does not perform well when
the distributions of data is far from a normal distribution. It will be shown that the normal mixture approach performsmore
properly in terms of both the efficiency and robustness. Although we emphasize the robust estimation for the mean and
covariance matrix of multivariate time series, if the true distribution of data belongs to the multivariate normal mixture
family, we can also provide the robust estimators for normal mixture parameters.

This paper is organized as follows. In Section 2, we introduce the construction of the robust estimator using the BHHJ’s
procedure. In Section 3,we showasymptotic properties of theMDPDE and its robustness by analyzing the influence function.
In Section 4, we apply our method to the estimation of parameters of multivariate normal mixture time series and compare
its performance with that of the MLE. Further, we conduct a simulation study to compare the performance of the proposed
estimator for the ACF with the sample autocovariance function (SACF). In Section 5, we apply our method to the portfolio
optimization problem by using Dow Jones Industrial average data. In Section 6, we provide the proofs.

2. MDPDE with multivariate normal mixture family

Consider a parametric family of models {Fθ }, indexed by the unknown parameter θ ∈ Θ ⊂ Rρ , possessing densities {fθ }
with respect to the Lebesguemeasure, and letG be the class of all distributions having densities with respect to the Lebesgue
measure. For estimating the unknown parameter θ , BHHJ introduced a family of density power divergences

dα(g, f ) :=


 

f 1+α(z) −


1 +

1
α


g(z)f α(z) +

1
α
g1+α(z)


dz, α > 0,

g(z)(log g(z) − log f (z))dz, α = 0,

where g and f are density functions, and defined the minimum density power divergence functional Tα(·) for G in G by

dα(g, fTα(G)) = min
θ∈Θ

dα(g, fθ ),

where g is the density of G. Note that if G belongs to {Fθ }, Tα(G) := θα = θ for some θ ∈ Θ . Based on these, given the
random sample X1, . . . , Xn with unknown density g , they defined the MDPDE as

θ̂α,n = argmin
θ∈Θ

Hα,n(θ), (2.1)

where Hα,n(θ) =
1
n

n
t=1 Vα(θ; Xt) and

Vα(θ; x) =




f 1+α
θ (z)dz −


1 +

1
α


f α
θ (x), α > 0,

− log fθ (x), α = 0.
(2.2)

BHHJ demonstrated that the estimator is robust against outliers but still has a high efficiency when the true density
belongs to the parametric family {Fθ } and α is close to 0. Note that when α = 0, 1, MDPDE is the same as the MLE and L2
the distance estimator respectively.

In this paper, we study theMDPDE for themean and covariancematrix of a d-dimensional strictly stationary and ergodic
time series {Xt , t = 1, 2, . . .}. Since the α > 1 case can cause a great loss of efficiency for some basic models as described
by Basu et al., we focus on the case 0 < α ≤ 1. In order to obtain the MDPDE for the mean and covariance matrix of Xt , we
consider a d-dimensional multivariate normal mixture parametric family in BHHJ’s procedure. Let F = {fθ : θ ∈ Θ} be the
set ofm-component d-dimensional multivariate normal mixture densities of the form

fθ (x) =

m
j=1

ωjφ(x; µj, Σj),

wherem is known and φ(x; µj, Σj) =
1

√
2πd

|Σj|1/2
exp


−

1
2 (x − µj)

′Σ−1
j (x − µj)


satisfies for j = 1, . . . ,m,

Σj is symmetric, 0 <
1
n

(1 + α)d/2+1

α
≤ min

j
ωj ≤ 1,

m
j=1

ωj = 1, ∥µj∥ ≤ c1 < ∞,

0 < c2 ≤ λmin(Σj) ≤ λmax(Σj) ≤ c3 < ∞ for some positive constants c1, c2, c3, (2.3)

where λmin(Σj) and λmax(Σj) denote the minimal and maximal eigenvalues of Σj.
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