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a b s t r a c t

Sufficient dimension reduction is a body of theory and methods for reducing the
dimensionality of predictors while preserving information on regressions. In this paper
we propose a sparse dimension reduction method to perform interpretable dimension
reduction. It is designed for situations in which the number of correlated predictors
is very large relative to the sample size. The new procedure is based on the optimal
scoring interpretation of the sliced inverse regression method. As a result, the regression
framework of optimal scoring facilitates the use of commonly used regularization
techniques. Simulation studies demonstrate the effectiveness and efficiency of the
proposed approach.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Dimension reduction is one of the leitmotifs in statistics, enabling classification and regression to be performed in a
parsimonious way. Fisher’s linear discriminant analysis (LDA) is a popular data-analytic tool for supervised classification
and dimension reduction. LDA provides low-dimensional projections of data onto the discriminant directions that capture
most of the information about class separation. In the same spirit, dimension reduction without loss of information is one of
the dominant themes in the regression setting. Sufficient dimension reduction (SDR; Li, 1991; Cook, 1998) is a methodology
for reducing the dimension of predictors while preserving its regression relation with a response. The reduction is also
achieved by projecting raw predictors on to a lower-dimensional subspace. In the present paper, we make an attempt to
recast a semiparametric SDR approach in the LDA framework such that a simple and easily implementedmethod can handle
sparse dimension reduction. To this end, we describe SDR below.

Let xbe a p-dimensional randomvector representing the predictor, and Y be a randomvariable representing the response.
In full generality, SDR seeks to find a set of linear combinations of x, say BTx, where B is a p×dmatrixwith d ≤ p, such that Y
depends on x only through these linear combinations. The subspace span(B) is then called a dimension reduction subspace.
The intersection of all such subspaces, if also a dimension reduction subspace, is called the central dimension reduction
subspace, or the central subspace in short. Underminor conditions (Cook, 1994; Yin et al., 2008), the central subspace exists,
and thus, we assume its existence throughout this article. Moreover, the dimension d of the central subspace is treated as
known in the subsequent development.

Ever since the introduction of sliced inverse regression (SIR; Li, 1991) and sliced average variance estimation (Cook and
Weisberg, 1991), there has been considerable interest in dimension reductionmethods (Xia et al., 2002; Ye andWeiss, 2003;
Li and Wang, 2007; Cook and Forzani, 2009; Li and Dong, 2009; Zhu et al., 2010; Yin and Li, 2011). SDR has a wide range of
applications, and often performs quite well in simple, low-dimensional settings. However, in the high-dimensional setting
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where the number of predictors p is large relative to the number of observations n, the SDRmethods are not appropriate for
two reasons. First, they often require the inverse of the sample covariance matrix that is ill-conditioned or even singular,
and thus are not directly applicable. Second, it is difficult to interpret the estimated linear combinations, since they involve
all of the predictors.

Attempts have been made to address these problems in the literature. For example, Li et al. (2005) proposed the
concept of model-free variable selection based on SDR, and developed some test procedures to assess the contribution of
individual predictors. Because their tests are in general incorporated into a stepwise backward or forward search procedure,
these methods are computationally intensive and are unsatisfactory in terms of stability. Motivated by the least squares
formulation of sliced inverse regression originated by Cook (2004), Ni et al. (2005) combined the least absolute shrinkage
and selection operator (LASSO; Tibshirani, 1996) with sliced inverse regression to produce sparse estimates, while Li and
Yin (2008) developed a regularized version that achieves simultaneous predictor selection and dimension reduction and
allows n < p. Bondell and Li (2009) recently proposed the shrinkage covariance inverse regression estimation. All of them
are two-step procedures. First, apply relevant SDR methods to estimate the central subspace, say B̂. Second, determine the
shrinkage factor α = (α1, . . . , αp) ∈ Rp in the span{diag(α)B̂} by a LASSO-type regression. As a result, these methods
may fail in high-dimensional situations where the performance of B̂ may not be satisfactory because in the first step, the
estimation is based on all the predictors, rather than those relevant ones. Li (2007) studied a sparse SDR by adopting the
approach of Zou et al. (2006). Chen et al. (2010) proposed coordinate-independent sparse estimation that can simultaneously
achieve sparse sufficient dimension reduction and screen out irrelevant variables efficiently. Both approaches are subspace-
oriented because they can incorporate penalization with a broad series of SDR methods. However, they require the inverse
of the sample covariance matrix as well, and thus the application is problematic as remarked above.

Cook and Yin (2001) demonstrated that existing dimension-reduction methods in the regression setting can be quite
useful for constructing summary plots in the discriminant analysis. For example, SIR can be regarded as a linear discriminant
analysis applied to the predictors grouped by the categorical response; see also Pardoe et al. (2007). Note that the linear
discriminant analysis is equivalent to a multi-response linear regression using optimal scoring to represent the groups
(Hastie et al., 1994). In this paper, we shall show that sliced inverse regression with continuous response variable can be
recast into a regression framework via optimal scoring. This provides a way to show the connection between classification
and regression in terms of dimension reduction. Motivated by this optimal scoring interpretation for SIR, we then propose a
sparse dimension reduction in this paper, which is simple, easy to implement, and applicable to high-dimensional settings.
In particular, the newmethod does not involve the inverse of the covariancematrix of the high-dimensional predictor vector,
whereas almost all existing sparse dimension reduction methods involve the inverse matrix such that they have difficulty
to handle the ‘‘large p, small n’’ problems.

The paper is organized as follows. We review LDA and introduce optimal scoring for dimension reduction in Section 2.1,
and formulate SIR into an optimal scoring problem in Section 2.2. In Section 2.3, the sparse dimension reduction method is
proposed and an alternating minimization algorithm is provided. The results of simulation studies are reported in Section 3.
Concluding remarks about the proposed method can be found in Section 4.

2. Methodology and main results

2.1. The linear discriminant analysis by optimal scoring

Consider a discrimination problem with G classes and n observations. The training sample consists of measurements
xi = (xi1, . . . , xip)T , i = 1, . . . , n on the p predictors. Their class memberships are known. Let X = (xT1, . . . , x

T
n)

T be the
n× p data matrix, and Gg denote the indices of the observations in the gth class and ng = |Gg |. Assume that the data matrix
X is centered. The standard estimates of the p×pwithin-class and between-class covariancematrices are respectively given
by

Σ̂W =
1
n

G
g=1


i∈Gg

(xi − µ̂g)(xi − µ̂g)
T

and

Σ̂B =
1
n

G
g=1

ng µ̂g µ̂
T
g ,

where µ̂g is the sample mean vector for class g . Fisher’s linear discriminant analysis seeks a low-dimensional projection of
the observations such that the between-class variance is large relative to the within-class variance by solving

maximize
βk∈Rp

βT
k Σ̂Bβk

subject to βT
k Σ̂Wβk = 1, βT

k Σ̂Wβj = 0, j = 1, . . . , k − 1,
(2.1)
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