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a b s t r a c t

The most important factor in multivariate kernel density estimation is a choice of a
bandwidth matrix. This choice is particularly important, because of its role in controlling
both the amount and the direction of multivariate smoothing. Considerable attention has
been paid to constrained parameterization of the bandwidth matrix such as a diagonal
matrix or a pre-transformation of the data. A generalmultivariate kernel density derivative
estimator has been investigated. Data-driven selectors of full bandwidth matrices for a
density and its gradient are considered. The proposed method is based on an optimally
balanced relation between the integrated variance and the integrated squared bias. The
analysis of statistical properties shows the rationale of the proposed method. In order
to compare this method with cross-validation and plug-in methods the relative rate of
convergence is determined. The utility of the method is illustrated through a simulation
study and real data applications.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Kernel density estimates are one of the most popular nonparametric estimates. In a univariate case, these estimates
depend on a bandwidth,which is a smoothing parameter controlling smoothness of an estimated curve and a kernelwhich is
considered as aweight function. The choice of the smoothing parameter is a crucial problem in the kernel density estimation.
The literature on bandwidth selection is quite extensive, e.g., monographs Wand and Jones (1995), Silverman (1986) and
Simonoff (1996), papersMarron andRuppert (1994), Park andMarron (1990), Scott and Terrell (1987), Jones andKappenman
(1991) and Cao et al. (1994). As far as the kernel estimate of density derivatives is concerned, this problem has received
significantly less attention. In paper Härdle et al. (1990), an adaptation of the least squares cross-validation method is
proposed for the bandwidth choice in the kernel density derivative estimation. In paper Horová et al. (2002), the automatic
procedure of simultaneous choice of the bandwidth, the kernel and its order for kernel density and its derivative estimates
was proposed. But this procedure can be only applied in case that the explicit minimum of the Asymptotic Mean Integrated
Square Error of the estimate is available. It is known that this minimum exists only for d = 2 and the diagonal matrix H . In
paper Horová et al. (2012), the basic formula for the corresponding procedure is given.

The need for nonparametric density estimates for recovering structure in multivariate data is greater since a parametric
modeling is more difficult than in the univariate case. The extension of the univariate kernel methodology is not without its
problems. The most general smoothing parameterization of the kernel estimator in d dimensions requires the specification
entries of d × d positive definite bandwidth matrix. The multivariate kernel density estimator we are going to deal with is
a direct extension of the univariate estimator (see, e.g., Wand and Jones (1995)).

Successful approaches to the univariate bandwidth selection can be transferred to the multivariate settings. The least
squares cross-validation and plug-in methods in the multivariate case have been developed and widely discussed in papers
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Chacón and Duong (2010), Duong and Hazelton (2005b,a), Sain et al. (1994) and Duong (2004). Some papers (e.g., Horová
et al. (2008, 2012) and Vopatová et al. (2010)) have been focused on constrained parameterization of the bandwidth matrix
such as a diagonal matrix. It is well-known fact that a visualization is an important component of the nonparametric data
analysis. In paper Horová et al. (2012), this effective strategy was used to clarify the process of the bandwidth matrix
choice using bivariate functional surfaces. The paper Horová and Vopatová (2011) brings a short communication on a
kernel gradient estimator. Tarn Duong’s PhD thesis (Duong, 2004) provides a comprehensive survey of bandwidth matrix
selection methods for kernel density estimation. Papers Chacón et al. (2011) and Duong et al. (2008) investigated general
density derivative estimators, i.e., kernel estimators of multivariate density derivatives using general (or unconstrained)
bandwidth matrix selectors. They defined the kernel estimator of the multivariate density derivative and provided results
for theMean Integrated Square Error convergence asymptotically and for finite samples.Moreover, the relationship between
the convergence rate and the bandwidth matrix has been established here. They also developed estimates for the class of
normal mixture densities.

The paper is organized as follows: In Section 2 we describe kernel estimates of a density and its gradient and give a
form of the Mean Integrated Square Error and the exact MISE calculation for a d-variate normal kernel as well. The next
sections are devoted to a data-driven bandwidth matrix selection method. This method is based on an optimally balanced
relation between the integrated variance and the integrated squared bias, see Horová and Zelinka (2007a). Similar ideas
were applied to kernel estimates of hazard functions (see Horová et al. (2006) or Horová and Zelinka (2007b)). It seems that
the basic idea can be also extended to a kernel regression and we are going to investigate this possibility. We discuss the
statistical properties and relative rates of convergence of the proposed method as well. Section 5 brings a simulation study
and in the last section the developed theory is applied to real data sets.

2. Estimates of a density and its gradient

Let a d-variate random sample X1, . . . ,Xn be drawn from a density f . The kernel density estimator f̂ at the point x ∈ Rd

is defined as

f̂ (x,H) =
1
n

n
i=1

KH(x − Xi), (1)

where K is a kernel function, which is often taken to be a d-variate symmetric probability function, H is a d × d symmetric
positive definite matrix and KH is the scaled kernel function

KH(x) = |H|
−1/2K(H−1/2x)

with |H| the determinant of the matrix H.
The kernel estimator of the gradient Df at the point x ∈ Rd is

Df (x,H) =
1
n

n
i=1

DKH(x − Xi), (2)

where DKH(x) = |H|
−1/2H−1/2DK(H−1/2x) and DK is the column vector of the partial derivatives of K .

Since we aim to investigate both density itself and its gradient in a similar way, we introduce the notation

Dr f (x,H) =
1
n

n
i=1

DrKH(x − Xi), r = 0, 1, (3)

where D0f = f , D1f = Df .
We make some additional assumptions and notations:
(A1) The kernel function K satisfies the moment conditions


K(x)dx = 1,


xK(x)dx = 0,


xxTK(x)dx = β2Id, Id is the

d × d identity matrix.
(A2) H = Hn is a sequence of bandwidth matrices such that n−1/2

|H|
−1/2(H−1)r , r = 0, 1, and entries of H approach zero

((H−1)0 is considered as equal to 1).
(A3) Each partial density derivative of order r + 2, r = 0, 1, is continuous and square integrable.
(N1) H is a class of d × d symmetric positive definite matrices.
(N2) V (ρ) =


R ρ2(x)dx for any square integrable scalar valued function ρ.

(N3) V (g) =


Rd g(x)gT (x)dx for any square integrable vector valued function g . In the rest of the text,


stands for


Rd

unless it is stated otherwise.
(N4) DDT

= D2 is a Hessian operator. Expressions like DDT
= D2 involve ‘‘multiplications’’ of differentials in the sense that

∂

∂xi

∂

∂xj
=

∂2

∂xi∂xj
.

This means that (D2)m,m ∈ N, is a matrix of the 2m-th order partial differential operators.
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