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a b s t r a c t

Diffusion processes arewidely used formodelling real-world phenomena. Except for select
cases however, analytical expressions do not exist for a diffusion process’ transitional
probabilities. It is proposed that the cumulant truncation procedure can be applied
to predict the evolution of the cumulants of the system. These predictions may be
subsequently used within the saddlepoint procedure to approximate the transitional
probabilities. An approximation to the likelihood of the diffusion system is then easily
derived. The method is applicable for a wide range of diffusion systems — including
multivariate, irreducible diffusion systems that existing estimation schemes struggle with.
Not only is the accuracy of the saddlepoint comparable with the Hermite expansion — a
popular approximation to a diffusion system’s transitional density — it also appears to be
less susceptible to increasing lags between successive samplings of the diffusion process.
Furthermore, the saddlepoint is more stable in regions of the parameter space that are far
from the maximum likelihood estimates. Hence, the saddlepoint method can be naturally
incorporated within a Markov Chain Monte Carlo (MCMC) routine in order to provide
reliable estimates and credibility intervals of the diffusionmodel’s parameters. Themethod
is applied to fit the Hestonmodel to daily observations of the S&P 500 and VIX indices from
December 2009 to November 2010.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Diffusion processes are continuous-time, continuous-space stochastic processes that have proven to be naturalmodelling
frameworks for many real world phenomena. Over an infinitesimal interval dt , the evolution of a multivariate diffusion
process φ∗

t is represented by the following, possibly time inhomogeneous, stochastic differential equation (SDE):

dφ∗

t = µ

φ∗

t , t; θ

dt + σ


φ∗

t , t; θ

dBt , (1)

where φ∗
t = (φi)i=1,...,m; θ = (θi)i=1,...,p is the parameter vector; µ


φ∗
t , t; θ


= (µi)i=1,...,m; σ 2


φ∗
t , t; θ


=

σij

i,j=1,...,m

with σ 2

φ∗
t , t; θ


= σ


φ∗
t , t; θ

T
σ

φ∗
t , t; θ


and Bt is an m-dimensional vector of independent Brownian motions. The

m-dimensional vector φ∗
t represents a set of state variables which characterizes the diffusion system through time. The

assumption that the m Brownian motions are independent does not lead to any loss of generality since allowance is made
for off-diagonal terms within the diffusion matrix σ 2


φ∗
t , t; θ


. Within this framework, the primary focus is on estimating

the parameter vector θ from discretely sampled data.
The drift vector µ


φ∗
t , t; θ


and the diffusion matrix σ 2


φ∗
t , t; θ


characterize the evolution of φ∗

t . Their individual
elements are defined as:

µi = lim
1t→0

E[1φi|φ
∗
t ]

1t
, σij = lim

1t→0

Cov[1φi, 1φj|φ
∗
t ]

1t
.
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Over an infinitesimally small interval, the diffusion system is distributed as follows:

φ∗

t+1t − φ∗

t ∼ Normal

µ

φ∗

t , t; θ

1t, σ 2 φ∗

t , t; θ

1t

. (2)

That is, the diffusion system has a multivariate-normal distribution characterized by the drift vector and diffusion matrix
over any infinitesimal interval. Since diffusion processes are Markovian, Eq. (2) may be used to derive the likelihood for
continuously sampled diffusion paths. However with discretely sampled diffusion paths, statistical inference is considerably
more challenging. This is because the distribution of the diffusion increments over discretely sampled time points is often
unknown.

Instead of representing a multivariate diffusion system φ∗
t as a stochastic differential equation, one may instead focus on

the Kolmogorov forward equation, which dictates the evolution of its probability density function p(φ∗
t ). This is given by:

∂p(φ∗
t )

∂t
= −

m
i=1

∂

∂φi


µ

φ∗

t , t; θ

p(φ∗

t )

+

1
2

m
i=1

m
j=1

∂2

∂φi∂φj


σij(φ

∗

t , t; θ)p(φ∗

t )

. (3)

This is also known as the Fokker–Planck equation. Except where required, the dependence of the drift vector and diffusion
tensor on the parameter vector shall be suppressedwithin the notation. Since a diffusion process isMarkovian, the likelihood
of a diffusion system sampled at discrete time points (t1, t2, . . . , tN) is given by:

L(θ) = p(φ∗

t1)

N
i=2

p

φ∗

ti |φ
∗

ti−1


. (4)

Asymptotically, for large N , the term p(φ∗
t1)may be ignored whilst the transitional probability distribution p(φ∗

ti |φ
∗
ti−1

) is the
solution to Eq. (3) at time ti with the boundary condition that p(φ∗

t ) is given by the Dirac delta function centered aroundφ∗
ti−1

at time ti−1. The likelihood function is central to many inference procedures: it enables us to derive parameter estimates,
confidence intervals and to conduct hypothesis tests. Unfortunately, except for a few special cases, Eq. (3) (and hence also
the likelihood) is analytically intractable.

The inability to solve Eq. (3) is an impediment to statistical inference. This may be circumvented by attempting to match,
by choice of parameters, characteristics of the sampled path with characteristics of the diffusion model. For example, one
may choose to estimate the instantaneousmeans and variances using the corresponding samplemoments of the differenced
data (Gallant and Long, 1997; Ragwitz and Kantz, 2001). Alternatively onemay employ Bayesian imputation to augment the
observed data so that the diffusion increments are approximately normally distributed (Roberts and Stramer, 2001).

Since likelihood based methods tend to give more precise parameter estimates than method of moments estimators
(Hurn et al., 2007), we instead seek an approximation to the transitional probability distribution of the diffusion process.
Monte Carlo methods may be used to approximate the likelihood (Kleinhans and Friedrich, 2007; Durham and Gallant,
2002). Alternatively, Eq. (3) could be solved numerically. Wojtkiewicz and Bergman (2000) discretized the spatial domain
and solved the partial differential equation numerically at each point on the lattice. The finite-differencemethod discretizes
the time domain, taking advantage of the fact that over an infinitesimally small time period, the diffusion process is normally
distributed (Wehner andWolfer, 1987). Huang (2012) developed a quasi-maximum likelihood estimator that approximates
the first two conditional moments using a Wagner–Platen approximation. The resulting normal distribution can be used to
approximate the transitional probability.

Another possibility is to approximate the transitional probability distribution by a closed form analytic function; for
example, a Hermite polynomial expansion (Ait-Sahalia, 2002). This method was shown by Ait-Sahalia to be superior to
many of the competingmethods—both in terms of the accuracy of the transitional distribution approximation as well as the
speed of the algorithm. Stramer et al. (2010) created anMCMC procedure based on the Hermite approximation which could
allow for measurement errors in the diffusion process.

It must be stressed that the Hermite approximation is only applicable for reducible diffusion processes. A diffusion
process X is reducible if there exists a one-to-one transformation Y = h(X, θ) such that the covariance function of Y is
the identity matrix. Though all univariate diffusion processes are reducible, only some multivariate diffusions share this
property. Ait-Sahalia (2008) extended themethod to irreducible, multivariate diffusions, but not only is the proceduremore
difficult to implement, there is also a reduction in the accuracy of the closed-form approximation to the transitional density.
Furthermore, the Hermite approximation does not in general integrate to one. Indeed, for parameter values far from the
maximum likelihood estimates, the normalizer can be very far from one. This often prevents convergence when applying
theHermite approximationwithin anMCMC setting (Stramer et al., 2010). Consequently,withoutmodification, the resulting
MCMC credibility intervals often suffer from considerable undercoverage.

It has been proposed that the transitional probability may rather be estimated by a saddlepoint approximation (Daniels,
1954). The saddlepoint approximation is an algebraic expression based on a randomvariable’s cumulant generation function
(CGF). In cases where the first few moments of a random variable are known but the corresponding probability density is
difficult to obtain, the saddlepoint approximation to the density can be calculated. The tails of a saddlepoint approximation
are more accurate than those of a Edgeworth-expansion (Barndorff-Nielsen and Klüppelberg, 1999). Saddlepoint methods
have already been used to approximate the transition densities of diffusions (Ait-Sahalia and Yu, 2006; Preston and Wood,
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