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a b s t r a c t

In this paper, we investigate the variable selection problem for recurrent event data under
the additive rate model. According to the explicit estimator of the regression coefficients
of the additive rate model, a loss function is constructed. It has a form similar to the
ordinary least squares of a linear regression model up to a constant. We develop variable
selection procedures by penalizing the loss function with the adaptive L1 penalty and
smoothly clipped absolute derivation penalty, respectively. Under some mild regularity
conditions, the oracle properties of both procedures are established. Extensive simulation
studies are conducted to examine the performance of our proposed procedures in finite
samples. Finally, these methods are applied to the well-known chronic granulomatous
disease study.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Recurrent event data appear frequently in various fields, such as biomedical research, reliability experiments and
some other research fields. Examples of recurrent events include repeated opportunistic infections among HIV patients,
recurrent seizures in epileptic patients, multiple hospitalizations among organ transplant recipients, tumor metastases,
and so on. For the regression analysis of recurrent event data, there exist mainly two classes of methods in the literature:
conditional methods and marginal methods. The conditional methods are based on modeling the intensity or hazard
functions (Prentice et al., 1981; Anderson and Gill, 1982), while themarginal methodsmodel themean or rate functions (Lin
et al., 2000; Schaubel et al., 2006). Compared with the conditional methods, the marginal methods have fewer assumptions.
Furthermore, the mean number of recurrent events is more intuitive than the event intensity. Hence the marginal methods
for the recurrent event data have received much attention in recent years.

Variable selection is vital to complex statistical modeling and has been an important topic in regression analysis. As
discussed by Breiman (1996), the traditional methods for variable selection such as the best subset selection, AIC, BIC, etc.,
suffer from several drawbacks such as instability and intensive computation. In the last decade, many new and efficient
variable selectionmethods have been proposed by statisticians. Tibshirani (1996) proposed the least absolute shrinkage and
selection operator (LASSO) method which minimizes the penalized ordinary least squares with the L1 penalty function. By
a smart analysis, Fan and Li (2001) suggested the smoothly clipped absolute derivation (SCAD) penalty function and proved
the oracle property of the regression coefficient estimator from the SCAD penalized ordinary least squares. By modifying
the LASSO method, Zou (2006) developed the adaptive LASSO method and established the corresponding oracle property.
The adaptive LASSO and SCAD methods are currently the most important and frequently used variable selection methods
in various regression analyses.
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In the regression analysis of failure time data, variable selection and influence diagnostics have been investigated in the
literature (Fan and Li, 2002; Zhang and Lu, 2007; Leng and Ma, 2007; Leiva et al., 2007; Martinussen and Scheike, 2009; Li
and Gu, 2012). But to the best of our knowledge, there is no literature studying the variable selection problem for recurrent
event data except Tong et al. (2009),which proposed the variable selection procedure for themultiplicative ratemodel based
on the SCAD method. As noted by Schaubel et al. (2006), the popularity of the multiplicative rate model derives not only
from its utility and wide applicability, but also from convention and the availability of statistical software. The regression
coefficients based on the multiplicative rate model reflect relative covariate effects, while those for the additive rate model
characterize the absolute covariate effects. Schaubel et al. (2006) also pointed out that the additive rate model may indeed
be more appropriate in many applications, especially in the case of continuous covariates. Based on this point, in this paper,
we investigate the variable selection problem for recurrent event data under the additive rate model.

The remainder of this article is organized as follows. In Section 2,we introduce the additive ratemodel and a loss function.
The adaptive LASSO and SCAD methods along with their oracle properties and algorithms are stated in Sections 3 and 4
respectively. The performance of the proposed procedures in finite samples is investigated through extensive simulation
studies in Section 5 and the chronic granulomatous disease (CGD) study is analyzed to illustrate our procedures in Section 6.
The regularity conditions and the proofs of the theorems are given in the Appendix.

2. The additive rate model and a loss function

Let N∗(t) denote the number of recurrent events over time [0, t] and let C be the censoring time of the recurrent events.
Denote the p × 1 covariate vector by Z . Define the at risk process to be Y (t) = I(C ≥ t). Assume that the end time
of the study is τ and that P(C ≥ τ) > 0. Subject to right censoring, the observed event process is N(t) = N∗(t ∧ C),
i.e., N(t) =

 t
0 I(C ≥ s)dN∗(s). For the censoring mechanism, we assume that

E{dN∗(t)|Z, C ≥ t} = E{dN∗(t)|Z},

which is referred to as independent censoring or noninformative censoring in the literature.
In this article, we consider the following additive rate model:

E{dN∗(t)|Z} = dµ0(t) + βT
0 Zdt, (1)

whereµ0(t) is the true baselinemean function andβ0 is the true regression coefficient vector. Let {N∗

i (·), Ci, Zi, i = 1, . . . , n}
be independent and identically distributed samples undermodel (1). Throughout this paper, for a vector a, a⊗0

= 1, a⊗1
= a

and a⊗2
= aaT .

To estimate β0, Schaubel et al. (2006) developed the following estimating equation:

U(β) =

n
i=1

 τ

0
{Zi − Z̄(t)}dMi(β, t) = 0, (2)

where
Z̄(t) = S(1)(t)/S(0)(t),

S(k)(t) = n−1
n

i=1

Yi(t)Z⊗k
i , k = 0, 1

and

Mi(β, t) = Ni(t) −

 t

0
Yi(s){dµ0(s) + βTZids}.

For simplicity, in what follows, we denote Mi(β0, t) to be Mi(t). It is easy to see that Mi(t) and hence U(β0) are mean-zero
processes undermodel (1) and the assumption of independent censoring. By solving (2), we can obtain the explicit estimator

β̃ =


n

i=1

 τ

0
{Zi − Z̄(t)}⊗2Yi(t)dt

−1 
n

j=1

 τ

0
{Zj − Z̄(t)}dNj(t)


. (3)

Let An =
n

i=1

 τ

0 {Zi − Z̄(t)}⊗2Yi(t)dt and Un =
n

i=1

 τ

0 {Zi − Z̄(t)}dNi(t). Then β̃ = A−1
n Un, the large sample properties of

which were established by Schaubel et al. (2006).
It is easy to see that β̃ is the minimizer of the following loss function:

l(β) = βTAnβ − 2βTUn, (4)

i.e., β̃ = argminβ l(β). It is noted that (4) has a form similar to the ordinary least squares of a linear regression model up to
a constant. In fact, Leng and Ma (2007) and Martinussen and Scheike (2009) used the same idea for the variable selection
of the failure time data under the additive risk model (Lin and Ying, 1994). This loss function plays an important role in
our variable selection procedures. Based on the loss function, we can implement the variable selection procedures as in the
linear regression model. In Sections 3 and 4, we develop variable selection procedures by penalizing the loss function (4)
using the adaptive L1 penalty and smoothly clipped absolute derivation penalty functions, respectively.
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