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a b s t r a c t

The classical Hill estimator of a positive extreme value index (EVI) can be regarded as
the logarithm of the geometric mean, or equivalently the logarithm of the mean of order
p = 0, of a set of adequate statistics. A simple generalisation of the Hill estimator is
now proposed, considering a more general mean of order p ≥ 0 of the same statistics.
Apart from the derivation of the asymptotic behaviour of this new class of EVI-estimators,
an asymptotic comparison, at optimal levels, of the members of such class and other
known EVI-estimators is undertaken. An algorithm for an adaptive estimation of the tuning
parameters under play is also provided. A large-scale simulation study and an application
to simulated and real data are developed.

© 2012 Elsevier B.V. All rights reserved.

1. The new class of estimators and scope of the paper

Let us consider a sample of size n of independent, identically distributed (i.i.d.) random variables (r.v.’s), X1, . . . , Xn,
with a common distribution function (d.f.) F . Let us denote by X1:n ≤ · · · ≤ Xn:n the associated ascending order statistics
(o.s.’s) and let us assume that there exist sequences of real constants {an > 0} and {bn ∈ R} such that themaximum, linearly
normalised, i.e. (Xn:n − bn) /an, converges in distribution to a non-degenerate r.v. Then, the limit distribution is necessarily
of the type of the general extreme value (EV) d.f., given by

EVγ (x) =

exp(−(1+ γ x)−1/γ ), 1+ γ x > 0 if γ ≠ 0
exp(− exp(−x)), x ∈ R if γ = 0. (1)

The d.f. F is said to belong to the max-domain of attraction of EVγ , and we use the notation F ∈ DM


EVγ


. The parameter γ

is the extreme value index (EVI), the primary parameter of extreme events.
Let us denote by RVa the class of regularly varying functions at infinity, with an index of regular variation equal to a ∈ R,

i.e. positive measurable functions g(·) such that for all x > 0, g(tx)/g(t) → xa, as t → ∞ (see Bingham et al., 1987). The
EVI measures the heaviness of the right tail function

F(x) := 1− F(x),

and the heavier the right tail, the larger γ is. In this paper we work with Pareto-type underlying d.f.’s, with a positive EVI, or
equivalently, models such that F(x) = x−1/γ L(x), γ > 0, with L ∈ RV0, a slowly varying function at infinity, i.e. a regularly
varying function with an index of regular variation equal to zero. These heavy-tailed models are quite common in many
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areas of application, like computer science, telecommunications, insurance, finance, bibliometrics and biostatistics, among
others.

For Pareto-type models, the classical EVI-estimators are the Hill estimators (Hill, 1975), which are the averages of the
log-excesses, given by

Vik := ln
Xn−i+1:n

Xn−k:n
, 1 ≤ i ≤ k < n. (2)

We thus have

γ H
n (k) ≡ H(k) :=

1
k

k
i=1

Vik, 1 ≤ k < n. (3)

Note that with F←(x) := inf{y : F(y) ≥ x} denoting the generalised inverse function of F , and

U(t) := F←(1− 1/t), t ≥ 1,

the reciprocal quantile function, we can write the distributional identity X = U(Y ), with Y a unit Pareto r.v., i.e. a r.v. with
d.f. FY (y) = 1 − 1/y, y ≥ 1. For the o.s.’s associated with a random Pareto sample (Y1, . . . , Yn), we have the distributional

identity Yn−i+1:n/Yn−k:n = Yk−i+1:k, 1 ≤ i ≤ k. Moreover, kYn−k:n/n
p
−→
n→∞

1, i.e. Yn−k:n
p
∼ n/k. Consequently, and provided that

k = kn, 1 ≤ k < n, is an intermediate sequence of integers, i.e. if

k = kn →∞ and kn = o(n), as n→∞, (4)

we get

Uik :=
Xn−i+1:n

Xn−k:n
=

U(Yn−i+1:n)

U(Yn−k:n)
=

U(Yn−k:nYk−i+1:k)

U(Yn−k:n)
= Y γ

k−i+1:k(1+ op(1)), (5)

i.e. Uik
p
∼ Y γ

k−i+1:k. Hence, we have the approximation lnUik ≈ γ ln Yk−i+1:k = γ Ek−i+1:k, 1 ≤ i ≤ k, with E denoting a
standard exponential r.v. The log-excesses, Vik = lnUik, 1 ≤ i ≤ k, in (2), are thus approximately the k top o.s.’s of a sample
of size k from an exponential parent with mean value γ . This justifies the Hill EVI-estimator, in (3).

We can write

H(k) =
k

i=1

ln

Xn−i+1:n

Xn−k:n

1/k

= ln


k

i=1

Xn−i+1:n

Xn−k:n

1/k

, 1 ≤ i ≤ k < n,

the logarithm of the geometric mean of the statistics Uik, given in (5). More generally, we now consider as basic statistics for
the EVI estimation, themean of order p (MOP) of Uik, i.e. the class of statistics

Ap(k) =




1
k

k
i=1

Up
ik

1/p

if p > 0
k

i=1

Uik

1/k

if p = 0.

(6)

From (5), we can write Up
ik = Y γ p

k−i+1:k(1+ op(1)). Since

E(Y a) =
1

1− a
if a < 1, (7)

the law of large numbers enables us to say that if p < 1/γ ,

Ap(k)
p
−→
n→∞


1

1− γ p

1/p

, i.e.
1− A−pp (k)

p
p
−→
n→∞

γ .

Hence the reason for the new class of MOP EVI-estimators,

γ Hp
n (k) ≡ Hp(k) :=


1− A−pp (k)


/p if p > 0

ln A0(k) = H(k) if p = 0,
(8)

with Ap(k) given in (6), and with H0(k) ≡ H(k), given in (3). This class of MOP EVI-estimators depends on this tuning
parameter p ≥ 0, which makes it very flexible, and even able to overpass one of the simplest and one of the most efficient
EVI-estimators in the literature, the corrected-Hill (CH) estimator in Caeiro et al. (2005), to be introduced in Section 2.2.
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