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a b s t r a c t

Possibly misspecified linear quantile regression models are considered. A measure for
assessing the combined effect of several covariates on a certain conditional quantile
function is proposed. The measure is based on an adaptation to quantile regression of the
famous coefficient of determination originally proposed formean regression, and compares
a ‘reduced’ model to a ‘full’ model, both of which can be misspecified. An estimator of
this measure is proposed and its asymptotic distribution is investigated both in the non-
degenerate and the degenerate case. The finite sample performance of the estimator is
studied through a number of simulation experiments. The proposedmeasure is also applied
to a data set on body fat measures.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Quantile regression has emerged as an attractive alternative to the classical mean regression based on the quadratic loss
function. Since itwas introducedbyKoenker andBassett (1978) as a robust (to outliers) and flexible (about error distribution)
linear regression method, quantile regression has received considerable interest in both theoretical and applied statistics
(see Koenker, 2005 and references therein). As this method has widened its applications to many domains like economics,
biology, ecology and finance, it becomes very attractive for practitioners to develop a simple and effective assessment
measure of goodness-of-fit for quantile regression in the spirit of the well-known R2: the coefficient of determination for
linear mean regression.

To this end, when it is assumed that the true conditional quantile function is linear with respect to the given covariates,
Koenker and Machado (1999) proposed a measure of model adequacy in quantile regression that aims at measuring
prediction quality of a certain set of covariates. However, theoretical properties of its estimator have not been studied except
for thework ofMckean and Sievers (1987), who showed the consistency of the estimator for the conditionalmedian. Further,
no results exist when the linear model is misspecified. The consideration of misspecification deserves attention because it is
rare in reality that such a linear model assumption is correct. Yet practitioners often prefer to use a linear model for reasons
of parsimony or interpretability even when they are not sure about the correct specification.

Motivated by these observations, we revisit the measure proposed by Koenker and Machado (1999) and reinterpret it
as a way to compare two nested linear quantile models regardless of whether the corresponding true conditional quantile
functions are linear or not. This kind of reinterpretation is made possible because of the result in Kim andWhite (2003) and
Angrist et al. (2006), who showed the consistency for certain ‘‘pseudo-true’’ parameter values and the asymptotic normality
of the quantile estimatorwhen themodel ismisspecified. Further, we provide an asymptotic representation of the estimator
of the proposed measure, which implies its consistency and asymptotic normality. This result is meaningful in that such a
representation is not known (to the best of our knowledge) even for the case of a correctly specified linear model. Although
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our main goal in this paper is to propose a simple assessment measure of quantile regression under misspecification, it is
possible to use the asymptotic results for a specification test as is shown in Section 4.

The rest of this paper is organized as follows. In Section 2 we introduce our measure and provide some insight into it
using a few examples.We provide asymptotic results about the estimator of the proposedmeasure in Section 3 and describe
statistical inference based on it in Section 4. In Section 5 we present some Monte Carlo evidence of the developed theory,
whereas the analysis of data onbody fatmeasures is given in Section6. All the theoretical proofs are deferred to theAppendix.

2. Model adequacy measure under misspecification

To introduce our measure, we bring in some notations. Define the check loss function for a fixed quantile level q ∈ (0, 1)
as ρq(u) = 2u(q − I(u < 0)). Let Y be a one-dimensional dependent variable and X = (X⊤

0 ,X⊤

1 )⊤ be a random covariate
vector of dimension d0 + d1, with d0, d1 ≥ 1. The first (and only the first) element of X0 is 1. Then, our measure ζ (q) for
assessing the effect of X1 under possible misspecification of a linear q-th quantile regression model is defined as

ζ (q) = 1 −
E[ρq(Y − X⊤β∗

q)]

E[ρq(Y − X⊤

0 β∗

0,q)]
, (1)

where β∗

0,q and β∗

q are pseudo true parameters in the sense that they are assumed to be the unique minimizers of
E[ρq(Y − X⊤

0 b0)] and E[ρq(Y − X⊤b)] with respect to b0 and b, respectively. Equivalently, we can say that they are the best
approximations to the true quantile regression function that can be found within the two given families of linear models.
Neither of the two linear models are supposed to be correct, and they are both possibly subject to model misspecification.
In terms of the check loss distance, E[ρq(Y − X⊤β∗

q)] represents the amount of variation of Y that cannot be explained
through a ‘full’ but possibly incorrect linear model in X, and E[ρq(Y −X⊤

0 β∗

0,q)] is the variation of Y that cannot be explained
through the reduced linear model, which is also possibly incorrect. Consequently, ζ (q) is nothing but the relative loss of
explained variation in terms of the check distance that can be attributed to the lack-of-fit of the reduced qth quantile linear
model compared to the full one. From the definition, it is clear that 0 ≤ ζ (q) ≤ 1. ζ (q) = 0 is equivalent to saying that
β∗

= (β∗

0, 0), i.e. no information is lost when considering only the restricted linear model. Note that unlike R2, which is a
global measure, several ζ (q)’s (for different values of q) are able to show a more complete picture of the effect of X1 both in
the center and the tails. In other words, the proposed ζ (q) is a local measure of goodness of fit.

As noted by a referee, the proposedmeasure ζ (q) is only informative about the prediction qualities of the full and reduced
models for the outcome under the asymmetric loss function, but it is not directly informative about the approximation
properties of these models to the conditional quantile function under a precise loss function. To judge the approximation
quality one might consider measuring a distance between Qq(Y |X) and XTβ∗ and compare it with the distance between
Qq(Y |X0) and XT

0 β∗

0 . However, such a comparison is problematic because the target functions, Qq(Y |X) and Qq(Y |X0), are
different and furtherweneed to use nonparametricmethods to estimate those quantities. A possible solution to this problem
could be to use partial quantile regression as explained in Angrist et al. (2006) or to consider a different type of coefficient
as proposed in Noh et al. (in press).

Beforemoving into theoretical analysis of ζ (q) and its estimator, first wewill present two interesting applications of ζ (q)
when d0 = 1 (coefficient of determination) and d1 = 1 (covariate importance). We use the following model for illustration
of ζ (q):

Yi = 0.5 + X1i − 2X2i + β3X3i + νg(X1i) + σεi, i = 1, . . . , n, (2)

where g(X1i) = 1−cos(πX1i/2), σ = 0.4 and theXi = (X1i, X2i, X3i)
⊤’s are i.i.d. and generated froma truncatedmultivariate

normal distributionwith the constraints 0 ≤ Xki ≤ 1, k = 1, 2, 3. The errors εi’s are independent standard normal variables
and are independent of theXi’s. The details of this model are given in Example 3 of Section 5. Note that ν controls the degree
of the linear quantile regression model. Because it is difficult to calculate the value of β∗

q and β∗

0,q analytically, we use a
Monte Carlo approximation for the computation of ζ (q), using a large sample of size 500,000.

2.1. Coefficient of determination (d0 = 1)

If d0 = 1, then β∗

0,q becomes ξq = argminb E[ρq(Y − b)], which is the marginal qth quantile of Y , and then ζ (q) becomes

ζ (q) = 1 −
E[ρq(Y − X⊤β∗

q)]

E[ρq(Y − ξq)]
(3)

which we will call R∗(q) hereafter. R∗(q) is the quantile analogue of the well known Pearson’s correlation ratio η2
=

1 − E[Y − X⊤β∗
]
2/E[Y − E(Y )]2, i.e. the ‘theoretical’ R2 for the linear mean regression model E(Y |X) = X⊤β∗. For this

reason, when the underlying distribution is asymmetric or in the presence of outliers, R∗(0.5) could be used as a robust
alternative to R2. Like η2, R∗(q) lies in [0, 1]. R∗(q) = 0 corresponds to the case whenX⊤β∗

q = ξq with probability one, i.e. all
components ofβ∗

q vanish except the first one, which coincideswith ξq. In that case, no variability is captured byX via a linear
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