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Abstract

Two enhancements to the PLS regression algorithm are presented. The 3rst, direct PLS
(DPLS), o4ers a direct approximate formulation for the calculation of the required eigenvec-
tors when dealing with more than one dependent variable. The second enhancement is parallel
PLS (PPLS), a parallel version of the PLS algorithm restricted to the case of only one depen-
dent variable for the regression model. In the experiments, DPLS shows a 40% faster running
time, while the PPLS produces a speedup of 3 for the 3rst four machines in a computer cluster
architecture.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The PLS algorithm (Wold, 1966; Wold et al., 1983) has been widely used as a
chemometric tool for near-infrared spectral analysis (Haaland and Thomas, 1988). The
simplicity of the technique and robustness of the generated model also make the partial
least-squares approach a powerful tool for factor analysis, being applied to many other
areas such as process monitoring, marketing analysis and image processing (Morineau
and Tenenhaus, 1999; Milidi+u et al., 1999). In this paper we propose two enhancements
to PLS regression aimed at eBciency. The 3rst is a direct PLS (DPLS) formulation
for the case of more than one dependent variable, also referred as PLS2. The second
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is a parallel PLS (PPLS) devised for large data sets in the case of only one dependent
variable, also known as PLS1.

To measure the performance of DPLS, we report some experiments with nine
(Kalivas, 1997) data sets. This direct PLS model shows a competitive quality: similar
prediction errors and corresponding number of factors are observed. Moreover, since it
is not a convergence-dependent technique it shows a 40% faster running time. Regard-
ing PPLS performance, it shows with a relatively small data set an eBciency above
74% when using four nodes of our computer cluster.

In Section 2, we present the DPLS formulation. In Section 3, PPLS, our parallel
approach is presented.

2. DPLS

2.1. Modeling

In classical PLS modeling, the eigenvectors of the mixed independent and dependent
variables matrix X�YY�X must be computed in the case of two or more dependent
variables (PLS2). This can be accomplished, for example, using NIPALS, the power
method (Wu et al., 1997) or neural techniques such as Hebbian learning (Haykin,
1999). DPLS (Milidi+u and Renter+-a, 2001; Milidi+u et al., 2001), or DPLS, provides
a new method, yet approximate, for this calculation not relying on any convergence
criteria.

2.2. The algorithm

Let G denote the matrix X�YY�X . For each factor, we must 3nd the eigenvector
w of G associated with the largest eigenvalue.

When Y has only one dependent variable (l = 1), then G has rank 1 and a corre-
sponding non-normalized eigenvector is simply X�Y . This eigenvector corresponds to
the unique non-zero eigenvalue (X�Y )�(X�Y ). On the other hand, when l¿ 2 that
is not true anymore. Nevertheless, one can decompose G as follows:

G = X�(Y1Y�
1 + Y2Y�

2 + · · ·+ YlY�
l )X

and then,

G = X�Y1Y�
1 X + · · ·+ X�YlY�

l X; (1)

where Yi (16 i6 l) corresponds to the ith column of Y . For a simpler notation, we
write (1) as

G = G1 + G2 + · · ·+ Gl;
where Gi = X�YiY�

i X for i = 1; : : : ; l.
In order to 3nd w, the power method suggests that one multiplies an initial random

vector by G and normalize it until convergence. It is acceptable that among all matrices
Gi, the eigenvector w(1) with the largest eigenvalue 	(1) will have a greater inRuence



Download	English	Version:

https://daneshyari.com/en/article/10327723

Download	Persian	Version:

https://daneshyari.com/article/10327723

Daneshyari.com

https://daneshyari.com/en/article/10327723
https://daneshyari.com/article/10327723
https://daneshyari.com/

