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a b s t r a c t

Formanyproblems in geostatistics, land cover classification, and brain imaging the classical
Gaussian process models are unsuitable due to sudden, discontinuous, changes in the data.
To handle data of this type, we introduce a newmodel class that combines discreteMarkov
random fields (MRFs) with Gaussian Markov random fields. The model is defined as a
mixture of several, possibly multivariate, Gaussian Markov random fields. For each spatial
location, the discrete MRF determines which of the Gaussian fields in the mixture that
is observed. This allows for the desired discontinuous changes of the latent processes,
and also gives a probabilistic representation of where the changes occur spatially. By
combining stochastic gradient minimization with sparse matrix techniques we obtain
computationally efficient methods for both likelihood-based parameter estimation and
spatial interpolation. Themodel is compared to Gaussianmodels and standardMRFmodels
using simulated data and in application to upscaling of soil permeability data.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

In spatial statistics, data are often linked to spatially varying discrete covariates such as land cover categories in vegetation 2

models (Bolin et al., 2009), geology in soil permeability models (Kim et al., 2005), or brain tissue type in brain imaging 3

applications (Hildeman et al., 2017b). These covariates cause discontinuities in the data that easily can be accounted for if 4

one has access to the covariates. Unfortunately, these covariates are often unknown. In this scenario a standard Gaussian 5

random fieldmodel is not suitable, due to its inability of handling discontinuities. Here we introduce a class of models, based 6

on a combination of mixture models and Gaussian random fields, to handle this type of data. 7

One way to analyze data with missing discrete covariates is to first classify the data into the different distinct spatial 8

regions and then model each region separately. In many applications ranging from video surveillance to speaker identifi- 9

cation and image analysis (Reynolds and Rose, 1995; Stauffer and Grimson, 1999), Gaussian mixture models (GMMs) are 10

used for the classification problem. A GMM assumes independence between the observations and that the distribution 11

of each observation is π (y) =
∑K

k=1wkπk(y), where K is the number of classes, wk is the probability of class k, and πk a 12

multivariate normal density. The assumption of independence between the observations is a clear drawback with GMM- 13

based classification for spatial data. A strategy to account for spatial dependency is to allow for dependency in the allocation 14

variables, which can be done in several ways. One way is to model the class probabilities using a logistic regression model 15

based on Gaussian fields (Fernández and Green, 2002). Another way is to note that a random variable Y with a GMM 16

distribution can be written as Y =
∑K

k=1zkXk. Here Xk is a Gaussian random variable with density πk, and zk = I(z̃ = k) 17

where z̃ is a discrete random variable with P(z̃ = k) = wk. Spatial dependency can be introduced bymodeling the collection 18
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of the random variables z̃ for all observations as a discrete Markov random field (MRF) (see e.g. Held et al., 1997; Zhang et1

al., 2001; Van Leemput et al., 1999), which we refer to as an MRF mixture model.2

Allowing for spatial dependency in the mixture weights often improves the classification for spatial problems. Yet, it is3

often not sufficient since it cannot capture the dependence between observations within each class. To account for this, we4

replace the independent Gaussian variablesXk for each class by a spatially dependent Gaussian random field (see e.g. Cressie,5

1991; Cressie and Wikle, 2011). This allows us to use the model for classification, but also for noise reduction and spatial6

interpolation in cases where the data consist of noisy partial observations of fields with discontinuities. We refer to models7

of this type, which are introduced in more detail in Section 2, as latent Gaussian random field mixture (LGFM) models.8

The proposedmodel could be viewed as a non-stationary Gaussian random field, with a specific prior on spatially varying9

parameters. There is an extensive literature on non-stationary Gaussian fields, see for example Paciorek and Schervish10

(2006), Fuglstad et al. (2015), Higdon (2001) and Bolin and Lindgren (2011). A non-stationary Gaussian field that resembles11

the LGFM model is that of Fuentes and Smith (2001), where a process is created as a spatially varying average of stationary12

Gaussian processes. Other similar modeling approaches are those of Kim et al. (2005), where a tessellation of the spatial13

domain is used to define a mixture process, and the Bayesian treed Gaussian process models by Gramacy and Lee (2008).14

However, all these methods either lack the sharp and flexible discontinuities, or the computational efficiency, of the LGFM15

model.16

Since spatial problems often have massive amounts of data, a computationally efficient estimation method is needed17

in order to fit the LGFM model to data. Further, likelihood estimation for discrete MRFs is problematic due intractable18

normalizing constants. Two common methods for dealing with this issue are gradient-based minimization and pseudo-19

likelihood methods (Guyon, 1995; Hildeman et al., 2017b). Recently, gradient-based methods have also been developed20

for large-scale Gaussian random field models (Anitescu et al., 2012; Stein et al., 2013). We combine these two approaches21

into a computationally efficient estimation method for LGFMmodels. The method is a stochastic version of the EM gradient22

method (Lange, 1995), and is introduced further in Section 3. The model is tested on two simulated data sets in Section 4,23

and on an application to upscaling soil permeability data in Section 5. Finally, Section 6 contains a discussion of possible24

extensions and furtherwork. The code used to obtain the results in the article is available at https://bitbucket.org/davidbolin/25

lgfm/.26

2. Latent Gaussian random field mixture models27

Let Y1, . . . ,YM be d-dimensional observations at locations s1, . . . , sM on a regular lattice with n nodes. The structure of a28

LGFMmodel for this data is29

Xk(s) = Bk(s)βk + ξk(s), k = 1, . . . , K ,

X(s) =

K∑
k=1

zk(s)Xk(s),

Ym = X(sm) + εm, m = 1, . . . ,M.

(1)30

Here εi are independent N(0,Σε) random variables representing measurement noise for each dimension, with Σε =31

diag(σ 2
1 , . . ., σ 2

d ), and the latent process X(s) is modeled as a mixture of K independent Gaussian random fields Xk(s). These32

Gaussian fields are specified using the mean-zero Gaussian fields ξk(s) as well as regressions Bk(s)βk =
∑P

p=1Bkp(s)βkp on33

fixed-effects Bkp(s) for the mean values. Finally, zk(s) = I(z̃(s) = k) where z̃(s) is a discrete MRF. In the following two34

sections, we introduce the statistical models for the discrete MRF and the Gaussian fields ξk(s) in more detail, and then35

discuss properties of the model.36

2.1. A model for the Gaussian fields ξk(s)37

In the case ofmultivariate data, we assume that the Gaussian fields ξk(s) have proportional correlationmodels (Chiles and38

Delfiner, 1999), whichmeans that their covariance functions can bewritten as C(ξk(s1), ξk(s2)) = Σkρk(∥s1 −s2∥), whereΣk39

is a d×d covariancematrix and ρk(·) is a spatial correlation function. The reason for this particular choice is that it makes the40

model a natural extension of the regular Gaussianmixturemodels, which have covariances C(ξk(s1), ξk(s2)) = Σkδ0(s1 −s2),41

where δ0 is a regular Dirac distribution.42

What remains is to decide on a model for the spatial correlation function. A popular choice is the Matérn correlation43

function, ρ(h) = 21−νΓ (ν)−1(κ∥h∥)νKν(κ∥h∥), where Γ is the gamma function and Kν is a modified Bessel function of44

the second kind. The positive parameters κ and ν determine the practical correlation range and the differentiability of the45

process, respectively. An advantage with this covariance function is that one then can use the stochastic partial differential46

equation (SPDE) connection (Lindgren et al., 2011) between Gaussian Matérn fields and Gaussian Markov random field47

models (Besag, 1974) to construct a model for ξk(s) that has important computational advantages.48

Sincewe assume that the data are on a lattice, we do not need the full generality of the SPDE approach.We can instead use49

that a conditional autoregressivemodel of order p ∈ N, a CAR(p)model, on a lattice inR2 can be viewed as an approximation50

of a Gaussian field with a Matérn covariance function with ν = p − 1. The CAR(1) model (which could be viewed as an51
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